检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
NF=expandable_segments:True python -m vllm.entrypoints.openai.api_server --model ${container_model_path} \ --max-num-seqs=256 \ --max-model-len=4096
W4A16量化 大模型推理中,模型权重数据类型(weight),推理计算时的数据类型(activation)和kvcache一般使用半精度浮点FP16或BF16。量化指将高比特的浮点转换为更低比特的数据类型的过程。例如int4、int8等。 模型量化分为weight-only量化
0~davinci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器
0~davinci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器
py,具体脚本内容参见权重转换脚本文件fp8_cast_bf16.py。权重转换需要使用有CPU资源的机器,建议直接登录Lite Server节点执行权重转换。 在Server机器上创建权重转换后的存放目录${path-to-file}/deepseekV3-bf16或${path-to-fi
object 服务器镜像信息。 category String 服务器归属类型。 HPS:超节点服务器 SPOD:整柜服务器 SERVER:单台服务器 server_hps ServerHpsInfo object 服务器归属超节点信息。 subnet_id String 实例所在子网ID。
于在启动计算机时加载操作系统, 命令将使用新安装的内核镜像更新GRUB的配置文件,以便在下次启动时加载新的内核。 父主题: Lite Server
购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检
上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.906)
-ip -g; done server_id:当前Server节点的IP地址,涉及4台机器。 container_ip:容器IP地址,无特殊配置时与server_id保存一致。 { "server_count": "4", "server_list": [
现。 更加完善的集群信息:全新改版的专属资源池详情页面中,提供了作业、节点、资源监控等更加全面的集群信息,可帮助您及时了解集群现状,更好的规划使用资源。 自助管理集群GPU/NPU驱动:每个用户对集群的驱动要求不同,在新版专属资源池列表页中,可自行选择加速卡驱动,并根据业务需要进行立即变更或平滑升级。
--draft-weight-name为小模型权重文件名,即刚才移动的.bin文件或者.safetensors 文件。 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910)
口上。 多节点训练:训练过程中的loss打印在第一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.908)
上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.910)
d单卡。 Ascend: 8*ascend-snt9b表示Ascend 8卡。 购买并开通资源 如果使用Server资源,请参考Lite Server资源开通,购买Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用
上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.907)
口上。 多节点训练:训练过程中的loss打印在第一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.907)
上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.908)
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 硬盘限制故障
上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.905)