检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Gallery除了支持托管文本生成和文本问答任务类型的模型,还支持托管其他任务类型的模型,其他任务类型的模型被称为自定义模型。但是托管的自定义模型要满足规范才支持使用AI Gallery工具链服务(微调大师、在线推理服务)。 自定义模型的使用流程 托管模型到AI Gallery。 模型基础设置里的“任务类型”选择除“文本问答”和“文本生成”之外的类型。
装操作系统。 安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com
zip软件包中的AscendCloud-AIGC-6.3.909-xxx.zip 说明: 包名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
记录“metadata”下的“id”(训练作业的任务ID)字段的值便于后续步骤使用。 “Status”下的“phase”和“secondary_phase”为表示训练作业的状态和下一步状态。示例中“Creating”表示训练作业正在创建中。 调用查询训练作业详情接口使用刚创建的训练作业返回的uuid查询训练作业状态。
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 必须修改,指定每个设备的训练批次大小。 gradient_accumulation_steps 8 指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。
装操作系统。 安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com
ication.py” ,此处的“demo-code”为用户自定义的OBS存放代码路径的最后一级目录,可以根据实际修改。 资源池:选择专属资源池。 类型:选择驱动/固件版本匹配的专属资源池Ascend规格。 作业日志路径:设置为OBS中存放训练日志的路径。例如:“obs://te
从OBS中导入模型文件创建模型时,模型文件包需符合ModelArts的模型包规范,推理代码和配置文件也需遵循ModelArts的要求。 本章节提供针对常用AI引擎的自定义脚本代码示例(包含推理代码示例)。模型推理代码编写的通用方法及说明请见模型推理代码编写说明。 Tensorflow
running”状态代表启动成功。 kubectl get pod -A 进入容器,{pod_name}替换为您的pod名字(get pod中显示的名字),{namespace}替换为您的命名空间(默认为default)。 kubectl exec -it {pod_name} bash -n
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。若未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过Notebook环境编辑
注并离开标注页面。选中的图片被自动移动至“已标注”页签,且在“未标注”和“全部”页签中,标签的信息也将随着标注步骤进行更新,如增加的标签名称、标签对应的图片数量。 智能标注 通过人工标注完成少量数据标注后,可以通过智能标注对剩下的数据进行自动标注,提高标注的效率。 在数据集详情页面,单击右上角“启动智能标注”。
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。若未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过Notebook环境编辑
本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过Notebook环境编辑
生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为文本嵌入,然后和一个随机高斯噪声,一起输入到U-Net网络中进行不断去噪。在经过多次迭代后,最终模型将输出和文字相关的图像。 SD1.5 Finetune是指在已经训练好的SD1.5模型基础上,使用新的数据集进行微调(f
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
S/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量