检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
碰撞后的数据分布不太均衡,负样本的比例过高。 这种情况下双方可以重复2-5的步骤更新自己提供的数据,多次执行样本分布统计直至达到比较满意的碰撞结果和分布结果。 至此联邦建模的数据准备阶段完成,接下来就是使用准备好的数据进行联邦建模。 父主题: 使用TICS多方安全计算进行联合样本分布统计
场景描述 本章节以“小微企业信用评分”场景为例。 背景信息 社保、水电气和资助金等数据统一存储在某政务云,由不同的局进行管理,机构想单独申请进行企业相关评分的计算会非常困难。 因此可以由市政数局出面,统一制定隐私规则,审批数据提供方的数据使用申请, 并通过华为TICS可信智能计算平台进行安全计算。
高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了同态加密。DAG图显示了“psi + 同态”的全过程流向,基本符合业界已公开的PSI算法流程和同态加密流程。 图2 加密流程 图3 加密流程 父主题: 可验证代码示例
再次单击作业,审批进行的同时敏感数据被进行了秘密分享加密。DAG图显示了“psi + 秘密分享”的全过程流向,基本符合业界已公开的PSI算法流程和秘密分享流程。 图2 加密流程 图3 加密流程 父主题: 基于TICS实现端到端的企业积分查询作业
json文件:对应空间配置,包含“空间区域”、“空间名称”、“空间ID”、“证书密码”等。 p12文件:计算节点的密钥文件。 jks文件:CA的“证书”,密钥和证书保证了空间下的用户,部署的计算节点能够数据交互,参与计算。同时,也隔离了不同空间之间的数据访问。 图3 下载计算节点配置 单击页面左侧“
调用接口提供如下认证方式。 Token认证:通过Token认证通用请求。 Token认证 Token的有效期为24小时,需要使用一个Token鉴权时,可以先缓存起来,避免频繁调用。 Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
组合架构 架构说明 图1 架构图例 作业发起方通过计算节点提供的控制台页面,发起多方安全计算作业。 多方安全计算作业在TICS中进行解析和任务计划构建,并下发任务给各个数据参与方所在的计算节点。 参与方计算节点从租户侧网络内的数据中获取数据,并使用安全算法进行加密输出。 数据在TICS提供的服务器中进行机密计算。
发起联邦预测 企业A单击“发起预测”按钮,选择己方和大数据厂商B的预测数据集,单击确定即可发起预测。 TICS服务会对两方的数据先进行样本对齐,并对双方共有的数据进行联邦预测,预测的结果会保存在企业A(作业发起方)的计算节点上。企业A可以通过obs服务或者登录到计算节点后台获取到对应路径的文件。
概述 联邦预测作业在保障用户数据安全、模型资产安全的前提下,利用多方数据和模型实现样本联合预测。 目前TICS支持两种类型的预测方式: 批量预测: 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 实时预测: 实时预测通过在计
认证鉴权 调用TICS接口仅支持Token认证。 Token认证 Token的有效期为24小时,需要使用一个Token鉴权时,可以先缓存起来,避免频繁调用。 Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将T
隐匿查询,也称隐私信息检索,是指查询方隐藏被查询对象关键词或客户id信息,数据服务方提供匹配的查询结果却无法获知具体对应哪个查询对象。数据不出门且能计算,杜绝数据缓存的可能性。 例如查询方希望查询身份证id为“张三”的人信贷公式数据,发起了一个类似于SELECT salary * 16 + age*10
传统金融企业联合营销模式中,金融企业往往需要将双方的数据集中到一个安全实验室中进行标签融合,模型训练,但常面临数据泄露和隐私等挑战。联邦建模采用分布式架构进行部署和建模,参与联合营销的企业原始和明细数据不出库的前提下进行跨域数据建模,实现精准营销,同时保障企业数据安全与个人隐私。 优势: 原始数
安全沙箱机制 背景 当计算节点执行横向联邦训练型作业时,若执行脚本中包含恶意行为,包含但不限于非授权访问其他作业数据、篡改文件和配置、恶意消耗容器资源等场景时,会影响到数据提供方的计算环境安全以及其他学习作业的正常执行。 针对该问题,在边缘节点部署场景中,TICS通过构建Pyth
group by industry 统计分析型的作业,可能被作业执行方通过增删某个碰撞的id,得到两次作业之间的差值,从而推算出实际taxpay和water_fee。 开启空间中的差分隐私开关保护敏感数据,符合差分隐私条件的统计作业,会自动应用差分隐私算法对计算结果进行加噪保护, 在一定误差范围内保证数据无法被恶意偷取。
算节点登录名称”和“登录密码”进入计算节点控制台,建立连接器,发布数据。 登录密码 - 登录计算节点控制台的密码。 确认密码 - 与“登录密码”保持一致即可。 指定开放端口 - 计算节点控制台系统的网络端口 部署配置相关参数 部署方式 - 当前版本支持云租户部署和边缘节点部署。
机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级 在实际应用中,升级、回滚是一个常见的场景,TICS能够很方便的支撑联盟和计算节点升级和回滚。回滚也称为回退,即当发现升级出现问题时,让联盟和计算节点自动回滚到老的版本。TICS已实现了在异常状态下的自动回滚。
登录计算节点控制台的用户名。用户可通过“计算节点登录名称”和“登录密码”进入计算节点控制台,建立连接器,发布数据。 登录密码 登录计算节点控制台的密码。 确认密码 与“登录密码”保持一致即可。 指定开放端口 计算节点控制台系统的网络端口。 部署配置相关参数 部署方式 当前版本支持云租户部署和边缘节点部署。 云租户部
Administrator TICS服务计算节点依赖IEF作为底层资源,因此需要IEF Administrator角色来部署应用。 由于云服务缓存需要时间,该权限3分钟左右才能生效。 父主题: 准备工作
计算节点管理 同一个空间中的用户,在使用可信计算服务时(联邦分析和联邦机器学习),需要部署计算节点,接入己方数据,作为可信计算服务的输入,通过执行联邦分析和联邦机器学习作业后,最终拿到结果。 计算节点以容器的形式部署,支持云租户部署和边缘节点部署,用户可根据数据源的现状,采用合适的计算节点部署方案。