检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
提示词工程介绍 提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用
NLP大模型专门用于处理和理解人类语言。它能够执行多种任务,如对话问答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模
数据版权设置。训练模型的数据集除用户自行构建外,也可能会使用开源的数据集。数据版权功能主要用于记录和管理数据集的版权信息,确保数据的使用合法合规,并清晰地了解数据集的来源和相关的版权授权。通过填写这些信息,可以追溯数据的来源,明确数据使用的限制和许可,从而保护数据版权并避免版权纠纷。 图5 设置数据版权 单击页
当出现第三方库冲突的时,如Jackson,okhttp3版本冲突等。可以引入如下bundle包(3.0.40-rc版本后),该包包含所有支持的服务和重定向了SDK依赖的第三方软件,避免和业务自身依赖的库产生冲突: <dependency> <groupId>com.huaweicloud.sdk</groupId>
进行清洗、转换、提取和过滤等操作,以确保数据符合模型训练的标准和业务需求。 通过这一过程,用户能够优化数据质量,去除噪声和冗余信息,提升数据的准确性和一致性,为后续的模型训练提供更高质量、更有效的输入。数据加工不仅仅是对数据的简单处理,它还针对不同数据类型和业务场景进行有针对性的优化。
根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户
获取、加工、标注、评估和发布等过程,确保数据能够高效、准确地为大模型的训练提供支持,帮助用户高效管理和处理数据,提升数据质量和处理效率,为大模型开发提供坚实的数据基础。 数据工程所包含的具体功能如下: 数据获取:数据获取是数据工程的第一步,涉及从不同来源和格式的数据导入到平台。ModelArts
Studio大模型开发平台提供了标注审核功能(即对标注后的数据集进行审核),确保标注结果经过验证和质量控制,提升数据的可靠性和可用性。同时,平台支持对视频类和图片类数据集进行AI预标注,标注员可以在此基础上进行审核和修正,从而有效减少人工标注的工作量,并保证原始数据集内容的完整性。 通过这些功能
此示例演示了如何从头创建SFT(有监督微调)训练任务。通过该示例,您将了解以下内容: 如何将数据导入平台并进行数据加工、标注和评估操作。 如何创建SFT训练任务并配置训练参数,以提升文本理解和生成的质量。 如何执行模型的压缩和部署操作。 准备工作 请提前准备文本类数据,文本类数据集格式要求请详见《用户指南》“使用数据工程准备与处理数据集
盘古大模型空间资产介绍 在ModelArts Studio大模型开发平台的空间资产中,包括数据和模型两类资产。这些资产为用户提供了集中管理和高效操作的基础,便于用户实现统一查看和操作管理。 数据资产:用户已发布的数据集将作为数据资产存放在空间资产中。用户可以查看数据集的详细信息,
盘古大模型分为模型订阅服务、训练服务和推理服务三个收费项。 模型订阅服务按照订阅时长计费,提供3个月与1年两种周期供客户选择,自支付完成开始计费。 数据智算服务、数据通算服务、数据托管服务按服务的单元数量和时长计费,时长精确到秒。 模型训练服务按服务的单元数量和时长计费,时长精确到秒。 模
盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护。请参考OBS
盘古大模型服务致力于深耕行业,打造多领域行业大模型和能力集。 ModelArts Studio大模型开发平台是盘古大模型服务推出的集数据管理、模型训练、模型部署于一体的综合平台,专为开发和应用大模型而设计,旨在为开发者提供简单、高效的大模型开发和部署方式。平台配备数据工程、模型开发、应用
数据工程使用流程 高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。
计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。 父主题:
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例
发布提示词 通过横向比较提示词效果和批量评估提示词效果,如果找到高质量的提示词,可以将这些提示词发布至“提示词模板”中。 在提示词“候选”页面,选择质量好的提示词,并单击“保存到模板库”。 图1 保存提示词至模板库 进入“Agent 开发 > 提示词工程 > 提示词模板”页面,查看发布的提示词。
领域,融合了AI数据建模和AI方程求解方法。该模型从海量数据中提取数理规律,利用神经网络编码微分方程,通过 AI 模型更快速、更精准地解决科学计算问题。 ModelArts Studio大模型开发平台为用户提供了多种规格的科学计算大模型,以满足不同场景和需求。以下是当前支持的模型