检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
可选参数,此处以订阅算法举例 item_version_id="1.0.1", # 订阅算法的版本号,该示例为1.0.1版本,可选参数,此处以订阅算法举例 parameters=[ wf.AlgorithmParameters(name="task_type"
Long 训练作业的版本ID。 version_name String 训练作业的版本名称。 pre_version_id Long 训练作业前一版本的名称。 engine_type integer 训练作业的引擎类型。“engine_type”和“engine_name”对应关系如下:
Long 训练作业的版本ID。 version_name String 训练作业的版本名称。 pre_version_id Long 训练作业前一版本的ID。 engine_type Long 训练作业的引擎类型。 engine_name String 训练作业的引擎名称。 engine_id
当前服务使用的资源池规格。如果使用公共资源池部署,则不显示该参数。 个性化配置 您可以为在线服务的不同版本设定不同配置条件,并支持携带自定义运行参数,丰富版本分流策略或同一版本内的不同运行配置。您可以打开个性化配置按钮,单击“查看配置”修改服务个性化配置。 服务流量限制 服务流量限制是指每秒内一个服务能够被访问的次数上限。
预置框架启动文件的启动流程说明 ModelArts Standard训练服务预置了多种AI框架,并对不同的框架提供了针对性适配,用户在使用这些预置框架进行模型训练时,训练的启动命令也需要做相应适配。 本章节详细介绍基于不同的预置框架创建训练作业时,如何修改训练的启动文件。 Asc
使用ModelArts VSCode插件调试训练ResNet50图像分类模型 应用场景 Notebook等线上开发工具工程化开发体验不如IDE,但是本地开发服务器等资源有限,运行和调试环境大多使用团队公共搭建的CPU或GPU服务器,并且是多人共用,这带来一定的环境搭建和维护成本。
使用CES监控Lite Server资源 场景描述 Lite Server的监控能力依赖于CES云监控服务。本文主要介绍如何对接CES云监控服务,对Lite Server上的资源和事件进行监控。 监控方案介绍 监控概述请参考BMS官方文档。除文档所列支持的镜像之外,目前还支持Ubuntu20
CarbonData:Carbon格式(仅表格数据集支持) CSV:CSV格式 version_id 否 String 数据集版本ID。当导出数据集某一版本的数据时,需要指定该参数。 with_column_header 否 Boolean 导出时是否将列名写到CSV文件的第一行,对于表格数据集有效。可选值如下:
创建Notebook实例 在开始进行模型开发前,您需要创建Notebook实例,并打开Notebook进行编码。 背景信息 Notebook使用涉及到计费,具体收费项如下: 处于“运行中”状态的Notebook,会消耗资源,产生费用。根据您选择的资源不同,收费标准不同,价格详情请
下载Postman软件并安装,您也可以直接在Chrome浏览器添加Postman扩展程序(也可使用其他支持发送post请求的软件)。Postman推荐使用7.24.0版本。 打开Postman,如图2所示。 图2 Postman界面 在Postman界面填写参数,以图像分类举例说明。 选择POST任务,将在
以PyTorch框架创建训练作业(新版训练) 本节通过调用一系列API,以训练模型为例介绍ModelArts API的使用流程。 概述 使用PyTorch框架创建训练作业的流程如下: 调用认证鉴权接口获取用户Token,在后续的请求中需要将Token放到请求消息头中作为认证。 调
只能以小写字母开头,由小写字母、数字、中划线(-)组成,不能以中划线结尾。 购买方案 ModelArts Standard场景下选择“ModelArts Standard(标准版)”。 “ModelArts Lite Elastic Cluster(原生接口)”用于ModelArts Lite Cluster场景,相关资料请见《ModelArts
} } } ] } 使用自定义依赖包的模型配置文件示例 如下示例中,定义了1.16.4版本的numpy的依赖环境。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
environment variable 识别错误配置且会影响性能的环境变量,如PLOG日志级别,HCCL相关环境变量,依赖24年930版本的pta。 comparison kernel compare 两张卡NPU侧计算算子对比。 api compare 两张卡CPU侧torch