检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
],列表中元素“service_instance”对象即为服务管理章节描述的可调用服务接口。 支持按照检索参数查询服务列表,返回满足检索条件的服务list,检索参数如表1所示。 在查询列表时,返回list的同时,默认会打印模型列表的详细信息,如表2和表3所示。 表1 查询检索参数说明 参数 是否必选
开发Workflow命令参考 开发Workflow的核心概念介绍 配置Workflow参数 配置Workflow的输入输出目录 创建Workflow节点 构建Workflow多分支运行场景 编排Workflow 发布Workflow 在Workflow中更新已部署的服务 Workflow高阶能力 父主题:
GPU业务迁移至昇腾训练推理 基于AIGC模型的GPU推理业务迁移至昇腾指导 GPU推理业务迁移至昇腾的通用指导
分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:
实现对单个节点的重置。勾选多个节点的复选框,单击操作记录旁的“重置”按钮,可实现对多个节点的重置。 如图1,下发重置节点任务时需要填写以下参数: 表1 重置参数说明 参数名称 说明 操作系统 选择下拉框中支持的操作系统。 配置方式 选择重置节点的配置方式。 按节点比例:重置任务包
创建训练作业界面无云存储名称和挂载路径排查思路 问题现象 创建训练作业界面没有云存储名称和挂载路径这两个选项。 原因分析 用户的专属资源池没有进行网络打通,或者用户没有创建过SFS。 处理方法 在专属资源池列表中,单击资源池“ID/名称”,进入详情页。单击右上角“配置NAS VPC”,检查是否开启了NAS
Lite Server资源使用 LLM/AIGC/数字人基于Server适配NPU的训练推理指导 GPT-2基于Server适配PyTorch GPU的训练推理指导
在ModelArts管理控制台的左侧导航栏中选择“专属资源池 > 弹性集群”。 在资源池列表中,单击资源池名称进入资源池详情页面。 在资源池详情页面,单击“标签”页签查看标签信息。 支持添加、修改、删除标签。标签详细用法请参见ModelArts如何通过标签实现资源分组管理。 图1
在ModelArts管理控制台的左侧导航栏中选择“模型训练 > 训练作业”。 在训练作业列表中,单击作业名称进入训练作业详情页面。 在训练作业详情页面,单击“标签”页签查看标签信息。 支持添加、修改、删除标签。标签详细用法请参见ModelArts如何通过标签实现资源分组管理。 图1
模型训练和推理,计算资源需收费。 存储资源费用:数据存储到对象存储OBS、云硬盘EVS、弹性文件服务SFS中的计费。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 公共资源池 使用计算资源的用量。 具体费用可参见ModelArts价格详情。 按需计费 规格单价
使用CTS审计ModelArts服务 ModelArts支持云审计的关键操作 查看ModelArts相关审计日志
自动模型优化(AutoSearch) 自动模型优化介绍 创建自动模型优化的训练作业 父主题: 使用ModelArts Standard训练模型
AI Gallery(旧版) AI Gallery简介 免费资产和商用资产 入驻AI Gallery 我的Gallery介绍 订阅使用 发布分享 参加活动 合作伙伴 需求广场
训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)
GLM3-6B模型基于DevServer适配PyTorch NPU训练指导(6.3.904) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 推理前的权重合并转换 父主题: LLM大语言模型训练推理
训练作业 创建训练作业 训练作业调测 查询训练作业列表 查询训练作业详情 更新训练作业描述 删除训练作业 终止训练作业 查询训练日志 查询训练作业的运行指标 父主题: 训练管理
管理同步在线服务 查看在线服务详情 查看在线服务的事件 管理在线服务生命周期 修改在线服务配置 在云监控平台查看在线服务性能指标 集成在线服务API至生产环境中应用 父主题: 使用ModelArts Standard部署模型并推理预测
SDXL基于Standard适配PyTorch NPU的Finetune训练指导(6.3.905) SDXL基于DevServer适配PyTorch NPU的Finetune训练指导(6.3.905) SDXL基于DevServer适配PyTorch NPU的LoRA训练指导(6.3.905) SDXL
制作自定义镜像用于推理 AI应用的自定义镜像制作流程 在Notebook中通过镜像保存功能制作自定义镜像用于推理 在Notebook中通过Dockerfile从0制作自定义镜像用于推理 在ECS中通过Dockerfile从0制作自定义镜像用于推理 父主题: 制作自定义镜像用于ModelArts
包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。 模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.