检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
daemon: Cannot pause container xxx”。 原因分析 执行镜像保存时,Notebook中存在状态为D的进程,会导致镜像保存失败。 解决方案 在Terminal里执行ps -aux命令检查进程。 执行kill -9 <pid>命令将相关进程结束后,再次执行镜像保存即可。
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
Diffusion WebUI如何适配? WebUI一般可以分为前端和后端实现两部分,后端的实现模式种类多样,并且依赖了多个的第三方库,当前在WebUI适配时,并没有特别好的方式。在对后端实现比较理解的情况下,建议针对具体的功能进行Diffusers模块的适配与替换,然后针对替换上去的Diffus
确认安装的SDK包是否是最新版本,避免出现包版本不一致问题。 检查编写的SDK代码是否符合规范,具体可参考相应的代码示例。 检查运行过程中输入的内容是否正确,格式是否与提示信息中要求的一致。 根据具体报错信息定位到报错的代码行,分析上下文逻辑。 历史SDK包常见的报错如下 服务部署节点运行报错
750 /home/ma-user 排查密钥是否是和实例绑定的一致。 停止实例,进入实例详情页。 更新密钥:单击“认证”旁边的编辑按钮,然后单击“立即创建”创建并选择新密钥。 重新使用VS Code连接实例,选择新创建的密钥。 父主题: VS Code连接开发环境失败故障处理
Notebook使用涉及到计费,具体收费项如下: 处于“运行中”状态的Notebook,会消耗资源,产生费用。根据您选择的资源不同,收费标准不同,价格详情请参见产品价格详情。当您不需要使用Notebook时,建议停止Notebook,避免产生不必要的费用。 创建Notebook时,如果选择使用云硬盘
身份认证与访问控制 身份认证 用户访问ModelArts的方式有多种,包括ModelArts控制台、API、SDK,无论访问方式封装成何种形式,其本质都是通过ModelArts提供的REST风格的API接口进行请求。 ModelArts的接口均需要进行认证鉴权以此来判断是否通过身
模式,以满足不同场景下的用户需求。如您需要快速了解ModelArts服务不同计费模式的具体价格,请参见ModelArts价格详情。 包年/包月:一种预付费模式,即先付费再使用,按照订单的购买周期进行结算。购买周期越长,享受的折扣越大。一般适用于计算资源需求量长期稳定的成熟业务。
rk下的磁盘空间满了,请参考Notebook提示磁盘空间已满排查并清理磁盘空间。 报错This site can't be reached 创建完Notebook后,单击操作列的“打开”,报错如下: 解决方案:复制页面的域名,添加到windows代理“请勿对以下列条目开头的地址使
团队标注功能当前仅支持“图像分类”、“物体检测”、“文本分类”、“命名实体”、“文本三元组”、“语音分割”类型的数据集。 不同类型数据集支持的功能列表 其中,不同类型的数据集,支持不同的功能,详细信息请参见表1。 表1 不同类型数据集支持的功能 数据集类型 标注类型 人工标注 智能标注 团队标注 图片 图像分类 支持
Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部
如何查看ModelArts的Notebook使用的cuda版本? 执行如下命令查看环境中的cuda版本。 ll /usr/local | grep cuda 举例: 图1 查看当前环境的cuda版本 如图1所示,当前环境中cuda版本为10.2 父主题: Standard Notebook
且已保存为自定义镜像), 然后使用DataArts执行此脚本的任务时提示没有这个库。 原因分析 客户创建了多个虚拟环境,numba库安装在了python-3.7.10中,如图1所示。 图1 查询创建的虚拟环境 解决方案 在Terminal中执行conda deactivate命令
当参数值>1时,保存模型版本次数与SAVE_TOTAL_LIMIT的值一致。 步骤二 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图2 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入:
Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部
Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部
Boxes 横坐标:目标框的面积占比,即目标框的面积占整个图片面积的比例,越大表示物体在图片中的占比越大。 纵坐标:框数量(统计所有图片中的框)。 主要判断模型中使用的anchor的分布,如果目标框普遍较大,anchor就可以选择较大。 按边缘化程度统计框数量的分布 Marginalization
已订阅的资产。 我的案例 展示个人发布的资产案例和已订阅的资产案例。 “我的发布”:可以查看个人发布的案例信息。 “我的订阅”:可以查看个人订阅的案例信息。 我的AI说 展示个人发布的技术文章列表,可以查看文章浏览量、收藏量、订阅量等信息。通过右侧的“删除”可以管理已发布的技术文章。
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
每个输出序列要生成的最大tokens数量。 top_k 否 -1 Int 控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0