检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
computation. 原因分析 分布式Tensorflow不能使用“tf.variable”要使用“tf.get_variable”。 处理方法 请您将“启动文件”中的“tf.variable”替换为“tf.get_variable”。 父主题: 业务代码问题
必须大于0,不配置默认值为1。当小于1时,代表滚动升级时增加的实例数的百分比;当大于1时,代表滚动升级时最大扩容的实例数。 max_unavailable 否 Float 必须大于0,不配置默认值为0。当小于1时,代表滚动升级时允许缩容的实例数的百分比;当大于1时,代表滚动升级时允许缩容的实例数。 terminat
调优前后性能对比 在完成上一章几类调优方式之后,在单卡场景下实测性能调优比对结果如下表所示: 设备 batch_size Steps/Sec 1p-GPU Ant8 16 3.17 1p-NPU snt9b 313T 16 2.17 1p-NPU snt9b 313T调优后 16
在OBS服务中创建桶和文件夹,用于存放样例数据集以及训练代码。需要创建的文件夹列表如表1所示,示例中的桶名称“test-modelarts”和文件夹名称均为举例,请替换为用户自定义的名称。 创建OBS桶和文件夹的操作指导请参见创建桶和新建文件夹。 请确保您使用的OBS与ModelArts在同一区域。 表1
er会被调度到相同的机器上。由于训练数据对于ps没有用,因此在代码中ps相关的逻辑不需要下载训练数据。如果ps也下载数据到“/cache”,实际下载的数据会翻倍。例如只下载了2.5TB的数据,程序就显示空间不够而失败,因为/cache只有4TB的可用空间。 处理方法 在使用Ten
理 Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。
ner_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/home/
ner_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/home/
Eagle的模型大小及结构,与基模型的某一层完全相同,这使得它的大小远远小于其基模型。解决了对于部分原始LLM模型,找不到合适的投机模型的问题。 投机小模型训练端到端示例 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle
在安装ma-cli时会默认同时安装所需的依赖包。当显示“Successfully installed”时,表示ma-cli安装完成。 如果在安装过程中报错提示缺少相应的依赖包,请根据报错提示执行如下命令进行依赖包安装。 pip install xxxx 其中,xxxx为依赖包的名称。 父主题: ModelArts
记住使用Dockerfile创建的新镜像名称, 后续使用 ${dockerfile_image_name} 进行表示。 Step2 在ECS中Docker登录 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。
在OBS服务中创建桶和文件夹,用于存放样例数据集以及训练代码。需要创建的文件夹列表如表1所示,示例中的桶名称“test-modelarts” 和文件夹名称均为举例,请替换为用户自定义的名称。 创建OBS桶和文件夹的操作指导请参见创建桶和新建文件夹。 请确保您使用的OBS与ModelArts在同一区域。 表1
named XXX 原因分析 No Module named XXX,表示模型中没有导入对应依赖模块。 处理方法 依赖模块没有导入,需要您在模型推理代码中导入缺失依赖模块。 例如您的模型是Pytorch框架,部署为在线服务时出现告警:ModuleNotFoundError: No module
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
nput的列表 outputs 服务部署节点的输出列表 是 ServiceOutput或者ServiceOutput的列表 title title信息,主要用于前端的名称展示 否 str description 服务部署节点的描述信息 否 str policy 节点执行的policy
String 自定义镜像训练作业的自定义镜像的容器的启动命令。例如python train.py。 parameters Array of Parameter objects 训练作业的运行参数。 policies policies object 作业支持的策略。 inputs Array
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可
ication.py” ,此处的“demo-code”为用户自定义的OBS存放代码路径的最后一级目录,可以根据实际修改。 资源池:选择专属资源池。 类型:选择驱动/固件版本匹配的专属资源池Ascend规格。 作业日志路径:设置为OBS中存放训练日志的路径。例如:“obs://te
在需要查看的事件左侧,单击展开该事件的详细信息。 单击需要查看的事件“操作”列的“查看事件”,可以在弹窗中查看该操作事件结构的详细信息。 更多关于云审计服务事件结构的信息,请参见《云审计服务用户指南》。 父主题: 使用CTS审计ModelArts服务