检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
max_model_len 解决方法: 修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenize
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
源(如计算规格、OBS桶)、等都将被冻结,资源进入保留期。保留期的资源不支持任何操作。如果用户在宽限期内充值,则华为云会自动扣取欠费金额(含宽限期内产生的费用) 保留期到期时仍未支付欠款(含宽限期内产生的费用),则付费资源将释放,数据无法恢复。 宽限期和保留期的详细规则请参见宽限期保留期。
使用订阅算法训练结束后没有显示模型评估结果 问题现象 AI Gallery中的YOLOv5算法,训练结束后没有显示模型评估结果。 原因分析 未标注的图片过多,导致没有模型评估结果。 处理方法 对所有训练数据进行标注。 父主题: 预置算法运行故障
分类模型。可应用于商品的自动分类、运输车辆种类识别和残次品的自动分类等。例如质量检查的场景,则可以上传产品图片,将图片标注“合格”、“不合格”,通过训练部署模型,实现产品的质检。 物体检测 物体检测项目,是检测图片中物体的类别与位置。需要添加图片,用合适的框标注物体作为训练集,进
如果是“按需计费”的资源池,您可单击操作列的“删除”,即可实现对单个节点的资源释放。 如果想批量删除节点,勾选待删除节点名称前的复选框,然后单击名称上方的“删除”,即可实现对多个节点的资源释放。 如果是“包年/包月”且资源未到期的资源池,您可单击操作列的“退订”,即可实现对单个节点的资源释放。
选择文件路径 此时,会在IDE左侧出现该开发环境下的目录结构,选择想要上传的代码及其他文件,拖拽至目录对应的文件夹内即完成本地代码上传至云端。 在VS Code中打开要执行的代码文件,在执行代码之前需要选择合适的Python版本路径,单击下方默认的Python版本路径,此时在上方会出现该远
上传远端文件至JupyterLab 在Notebook的JupyterLab中,支持通过远端文件地址下载文件。 要求:远端文件的URL粘贴在浏览器的输入框中时,可以直接下载该文件。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts Upload
Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train.py中修改优化器为apex混合精度模式下的DDP优化方式(修改点:注释第161和167行,增加第168~170行)。
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
数据下载至容器的位置空间不足。 处理方法 请排查是否将数据下载至“/cache”目录下,GPU规格资源的每个节点会有一个“/cache”目录,空间大小为4TB。并确认该目录下并发创建的文件数量是否过大,占用过多存储空间会出现inode耗尽的情况,导致空间不足。 请排查是否使用的是GPU
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
选择刚才创建的弹性公网IP,单击“确定”。 图5 绑定弹性公网IP 通过SSH方式远程访问集群资源包括2种方式,密码方式或密钥方式,二选一即可。 通过SSH密钥方式登录云服务器,具体操作请参见SSH密钥登录方式。 通过SSH密码方式登录云服务器,具体操作请参见SSH密码登录方式。 父主题:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
代码在Notebook的keras镜像中可以正常运行,在训练模块使用tensorflow.keras训练报错时,出现如下报错:AttributeError: 'NoneType' object has no attribute 'dtype'。 原因分析 训练镜像的numpy版本与Notebook中不一致。
__mul__.2在forward计算阶段的第一个input存在偏差。 追溯代码实现是下图中noise变量使用torch.rand_like ()作noise变量的初始化 (下图第730行)。由于torch.rand_like()该函数会根据输入的input构造同样size、dtype