检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
文本对话 功能介绍 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 URI POST /v1/{project_id}/deployments/{deployment_id}/chat/completions 表1 路径参数 参数 是否必选 参数类型 描述 project_id
获取文本类数据集评估报告 ModelArts Studio大模型开发平台提供了详细的质量评估报告,帮助用户全面了解数据集的质量情况。获取数据集评估报告步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
创建文本类数据集评估任务 创建文本类数据集评估任务前,请先完成创建文本类数据集加工任务。 创建文本类数据集评估任务步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据评估 > 评估任务”,单击界面右上角“创建评估任务”。
标注管理” 在“标注管理”页面,单击操作列的“上线”对数据集进行上线。 图2 上线标注后的数据集 对不再使用的数据集可在操作列执行下线操作。若对当前标注数据集已执行发布操作发布文本类数据集,则不可将该标注数据集下线。 父主题: 标注文本类数据集
创建文本类数据集标注任务 创建文本类数据集标注任务前,请先完成创建文本类数据集加工任务。 创建文本类数据集标注任务步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据标注 > 标注管理”,单击页面右上角“创建标注任务”。
数据加工”,单击界面右上角“创建加工数据集”。 图2 数据加工 在“创建加工数据集”页面,选择需要加工的文本类数据集,并设置数据集的名称和描述。 选择数据集时,默认选择当前空间的数据集。如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 图3 创建加工数据集 单击“下一步”进入“算
的差异。 在“数据血缘”页签查看该数据集所经历的操作,如加工、发布操作。 上线后的加工数据集不支持编辑和删除操作。若执行该操作,需将数据集下线。 若上线后的加工数据集已执行发布操作发布数据集,则不可将该加工数据集下线。 父主题: 加工文本类数据集
审核文本类数据集标注结果 创建数据集标注任务时,如果设置了启用标注审核,在完成标注后可以在“标注审核”页面审核标注结果。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。
创建文本类数据集评估标准 ModelArts Studio大模型开发平台针对文本数据集预设了一套基础评估标准,涵盖了数据准确性、完整性、一致性、格式规范等多个维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建文本类数据集评估任务。
发布文本类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 文本类数据集支持发布的格式为: 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 自定义格式:文本类数据集可以使用自定义脚本进行数据格式转换。
评估文本类数据集 创建文本类数据集评估标准 创建文本类数据集评估任务 获取文本类数据集评估报告 父主题: 评估数据集
加工文本类数据集 创建文本类数据集加工任务 上线加工后的文本类数据集 父主题: 加工数据集
文本类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持文本类数据集的加工操作,分为数据提取、数据转换、数据过滤三类,文本类加工算子能力清单见表1。
文本类数据集格式要求 ModelArts Studio大模型开发平台支持创建文本类数据集,创建时可导入多种形式的数据,具体格式要求详见表1。 表1 文本类数据集格式要求 文件内容 文件格式 文件要求 文档 txt、mobi、epub、docx、pdf 数据集最大100万个文件,单
标注文本类数据集 创建文本类数据集标注任务 审核文本类数据集标注结果 上线标注后的文本类数据集 父主题: 标注数据集
调用盘古NLP大模型API实现文本对话 场景描述 此示例演示了如何调用盘古NLP大模型API实现文本对话功能。您将学习如何通过API接口发送请求,传递对话输入,并接收模型生成的智能回复。通过这一过程,您可以快速集成NLP对话功能,使应用具备自然流畅的交互能力。 准备工作 调用盘古
使用盘古预置NLP大模型进行文本对话 场景描述 此示例演示了如何使用盘古能力调测功能与盘古NLP大模型进行对话问答。您将学习如何通过调试模型超参数,实现智能化对话问答功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 >
Studio大模型开发平台支持发布操作的数据集类型如下: 文本类数据集,详见发布文本类数据集。 视频类数据集,详见发布视频类数据集。 图片类数据集,详见发布图片类数据集。 气象类数据集,详见发布气象类数据集。 预测类数据集,详见发布预测类数据集。 其他类数据集,详见发布其他类数据集。 支持发布的数据格式
据集评估任务。 创建视频类数据集评估标准步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据评估 > 评估标准”,平台预置的文本类数据集评估标准“视频数据质量标准 V1.0”,单击评估标准名称,可以查看具体的评估项。
支持数据评估的数据集类型 ModelArts Studio大模型开发平台支持评估操作的数据集类型如下: 文本类数据集,详见创建文本类数据集评估任务。 视频类数据集,详见创建视频类数据集评估任务。 图片类数据集,详见创建图片类数据集评估任务。 父主题: 评估数据集