检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
processed_for_ma_input/llama2-13b/converted_weights_TP${TP}PP${PP}目录下查看转换后的权重文件。 Megatron转HuggingFace参数说明 训练完成的权重文件默认不会自动转换为Hugging Face格式权重
<NODE_RANK=0> sh scripts/llama2/0_pl_lora_13b.sh localhost 1 0 训练完成后,请参考查看日志和性能章节查看LoRA微调训练的日志和性能。 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.905)
介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。 LoRA微调训练 介绍如何进行LoRA微调训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于S
介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。 父主题: 主流开源大模型基于Lite Cluster适配ModelLink
介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。 LoRA微调训练 介绍如何进行LoRA微调训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于S
NPUS_PER_NODE=4 sh scripts_modellink/llama2/0_pl_sft_7b.sh 最后,请参考查看日志和性能章节查看SFT微调的日志和性能。 父主题: 执行训练任务
在扩缩容页面,根据业务需要增删模型服务的实例数,配置完成后,单击“确认”提交扩缩容任务。 在我的服务列表,单击服务名称,进入服务详情页,可以查看修改后的实例数是否生效。 父主题: 管理我的服务
/home/ma-user/ws/processed_for_ma_input/llama2-13b/converted_weights_TP${TP}PP${PP} 目录下查看转换后的权重文件。 Megatron转HuggingFace参数说明 训练完成的权重文件默认不会自动转换为Hugging Face格式权重
介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。 父主题: 主流开源大模型基于DevServer适配ModelLink
介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。 父主题: 主流开源大模型基于Lite Cluster适配ModelLink
read(img_path), np.uint8), 1) 在MXNet环境下使用torch包,请您尝试如下方法先进行导包: import os os.sysytem('pip install torch') import torch 父主题: OBS操作相关故障
<NODE_RANK=0> sh scripts/llama2/0_pl_sft_13b.sh localhost 1 0 训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.905)
', type=str, default=os.path.join(file_dir, 'input_dir')) parser.add_argument('--output_dir', type=str, default=os.path.join(file_dir, 'output_dir'))
添加所有者:在同一窗口中,单击“添加”,在弹出的新窗口中,单击“主体”后面的“选择主体”,弹出“选择用户,计算机,服务账户或组”窗口,单击“高级”,输入用户名, 单击“立即查找”按钮,显示用户搜索结果列表。 选择您的用户账户,然后单击“确定”(大约四个窗口)以关闭所有窗口。 图1 添加所有者 完成所有操作后,再次关闭并打开VS
com/deep-learning/tf-1.13.2:latest 图2 上传镜像 完成镜像上传后,在“容器镜像服务控制台>我的镜像”页面可查看已上传的自定义镜像。 “swr.example.com/deep-learning/tf-1.13.2:latest”即为此自定义镜像的“SWR_URL”。
#检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward
ma-cli)" 此外,可以通过“ma-cli auto-completion Fish”或“ma-cli auto-completion Fish”命令查看“Zsh”、“Fish”中的自动补全命令。 命令概览 $ ma-cli auto-completion -h Usage: ma-cli auto-completion
1~1 默认值:1 top_k 选择在模型的输出结果中选择概率最高的前K个结果。 取值范围:1~1000 默认值:20 在对话框中输入问题,查看返回结果,在线体验模型服务。 图2 体验模型服务
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 更多查看训练日志和性能操作,请参考查看日志和性能章节。 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.905)
m_train/saved_dir_for_output/llama2-13b/saved_models/。 训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.906)