检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
获取API认证鉴权信息(获取Token) 登录“我的凭证 > API凭证”页面,获取user name、domain name、project id。 project id参数需要与盘古服务部署区域一致。例如,盘古大模型部署在“西南-贵阳一”区域,需要获取与“西南-贵阳一”区域对应的project
模型的基础信息 盘古大模型平台为用户提供了多种规格的模型,涵盖从基模型到功能模型的多种选择,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 NLP大模型清单 模型类别 模型
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
目录\封面过滤 移除文本的目录和封面。 图注标注过滤 移除文本中的图标和标注信息。 参考文献过滤 移除文本中参考文献的信息。 数据去重 去重 移除文本中重复内容。 数据安全 数据脱敏 识别并对文本中电话号码、邮箱、身份证等信息进行脱敏。 敏感词过滤 识别并过滤文本中包含的涉黄、涉暴、涉政等敏感词。
可或缺的一部分,凭借其独特的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供一些基本信息,大模型就能生成需求的文案,从而大大提高文案的质量和效率。 除了短视频
露,保障个人隐私数据安全。 内容安全:通过预训练和强化学习价值观提示(prompt),构建正向的意识形态。通过内容审核模块过滤违法及违背社会道德的有害信息。 模型安全:通过模型动态混淆技术,使模型在运行过程中保持混淆状态,有效防止结构信息和权重信息在被窃取后暴露。 系统安全:通过
化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为JSON格式输出,以供下游操作,从而满足该场景下客户需求。 金融场景下,NL2
依据需要清洗的数据类型,选择对应的数据集和数据集版本,输出路径,设置名称、描述等信息为可选项。 输出路径默认为系统生成,您也可以自定义输出路径,当前支持覆盖和追加两种方式。 覆盖:清洗后数据覆盖和替换原有数据集内容。 追加:清洗后数据增加到原有数据集路径下。 任务信息填写完成后,单击“下一步”,搭建数据清洗流程。
自然语言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊的查询,也能提供准确的响应。这种对话问答方式提高了知识获取效率,使智能客服系统更加人性化和有温度。 此外,盘古大模型还能够根据用户的行为和反馈不断学习和优化,进一步提升服务能力。它
意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 写作示例
优化System prompt 提示财务报销助手依赖的必要信息,如用户名称等基础信息: final String customSystemPrompt = "你是财务报销助手。当需要用户反馈信息时,尽可能提示用户名称等原始信息。今天的日期是" + new SimpleDateF
排顺序 在提示词中内容的顺序也很重要,基于盘古大模型调优经验,将关键信息放在结尾处,模型输出效果更好。不同任务的关键信息不同,若需要模型生成的内容更具创意性,关键信息需要为内容描述;需要模型严格遵循指令进行回复的,关键信息为指令及说明。 父主题: 常用方法论
合规度校验规则说明 校验项 说明 个人隐私 校验数据中是否存在个人隐私信息,例如,身份证号、手机号、固定电话、Email地址、护照号、车牌号、军官证、车架号、GPS地址、IP地址、MAC地址和IMEI码等。 敏感关键词 校验数据中是否存在敏感关键字,如涉政信息。 表4 合规度状态说明 合规数据量
如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息,比如“以上是金融领域的新闻”、“以上是一篇xx领域的xxx文档”。
具。 历史信息处理策略 设置处理和利用用户历史对话信息的策略。 类型:对用户历史对话信息进行截断(truncation),用于控制传递给模型的上下文长度。 截断窗口大小:指在处理用户的历史对话信息时,系统会保留最近的N个对话传递给模型。 历史关键信息抽取 历史关键信息功能允许您在
提示词,查看不同提示词在模型中的使用效果。 在撰写提示词页面,找到页面右侧变量输入区域,在输入框中输入具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。用户也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。
与外部工具调用执行,一般包括任务规划、记忆系统和执行系统。 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。 任务执行:能通过
对话问答、规划推理、逻辑判断等能力,来理解和回应用户的需求。 例如,需要构建一个企业助理应用,该应用需要具备预定会议室、创建在线文档和查询报销信息等功能。在构建此应用时,需要将预定会议室与创建在线文档等功能的API接口定义为一系列的工具,并通过AI助手,将这些工具与大模型进行绑定
与外部工具调用执行,一般包括任务规划、记忆系统、执行系统: 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。 任务执行:能通过
History History缓存,用于存储历史对话信息,辅助模型理解上下文信息,历史消息对有固定窗口、消息摘要等策略。 初始化:消息记录支持不同的存储方式, 如内存、DCS(Redis)和RDS(Sql)。 from pangukitsappdev.memory.sql_message_history