检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
> 数据标注 > 标注管理” 在“标注管理”页面,单击操作列的“上线”对数据集进行上线。 图2 上线标注后的数据集 对不再使用的数据集可在操作列执行下线操作。若对当前标注数据集已执行发布操作发布文本类数据集,则不可将该标注数据集下线。 父主题: 标注文本类数据集
> 数据标注 > 标注管理” 在“标注管理”页面,单击操作列的“上线”对数据集进行上线。 图2 上线标注后的数据集 对不再使用的数据集可在操作列执行下线操作。若对当前标注数据集已执行发布操作发布视频类数据集,则不可将该标注数据集下线。 父主题: 标注视频类数据集
行上线操作。 单击数据集名称查看加工任务的基本信息、加工详情、加工后的数据文件以及数据血缘。 在“基本信息”页签可查看数据集的详细信息及操作概览。 在“加工详情”页签可以查看数据集的加工步骤和运行日志。 在“数据文件”页签可下载加工后的数据文件,可以与原始数据进行比对,查看加工前后的差异。
图片类数据集格式要求 ModelArts Studio大模型开发平台支持创建图片类数据集,创建时可导入图片、图片+Caption、图片+QA对三种类型的数据,具体格式要求详见表1。 表1 图片类数据集格式要求 文件内容 文件格式 文件要求 图片 tar、图片目录 图片:支持jpg
评估图片类数据集 创建图片类数据集评估标准 创建图片类数据集评估任务 获取图片类数据集评估报告 父主题: 评估数据集
标注图片类数据集 创建图片类数据集标注任务 审核图片类数据集标注结果 上线标注后的图片类数据集 父主题: 标注数据集
加工图片类数据集 创建图片类数据集加工任务 上线加工后的图片类数据集 父主题: 加工数据集
请检查网络是否正常,是否可以访问OBS桶中的数据。 数据评估 annotate type is invalid. 请检查上传的数据中,使用的数据标注类型、数据标注要求与平台要求的是否一致。 annotate data not exist. 待评测数据不存在,请检查数据是否导入成功,OBS桶是否为空。
行上线操作。 单击数据集名称查看加工任务的基本信息、加工详情、加工后的数据文件以及数据血缘。 在“基本信息”页签可查看数据集的详细信息及操作概览。 在“加工详情”页签可以查看数据集的加工步骤和运行日志。 在“数据文件”页签可下载加工后的数据文件,可以与原始数据进行比对,查看加工前后的差异。
> 数据标注 > 标注管理” 在“标注管理”页面,单击操作列的“上线”对数据集进行上线。 图2 上线标注后的数据集 对不再使用的数据集可在操作列执行下线操作。若对当前标注数据集已执行发布操作发布图片类数据集,则不可将该标注数据集下线。 父主题: 标注图片类数据集
类数据集评估任务。 创建图片类数据集评估标准步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据评估 > 评估标准”,平台预置的文本类数据集评估标准“图片数据质量标准 V1.0”,单击评估标准名称,可以查看具体的评估项。
图片类加工算子能力清单 表2 图片类加工算子功能表 算子分类 算子名称 算子描述 数据过滤 图片元数据过滤 基于图片存储大小、宽高比属性进行图片/图文数据清洗。 图片去重 通过把图片结构化处理后,过滤重复的图片/图文对数据。 数据打标 图片鉴黄评分 对图片的涉黄程度进行评分,分数越高越危险。评分
文本类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持文本类数据集的加工操作,分为数据提取、数据转换、数据过滤三类,文本类加工算子能力清单见表1。
气象类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类加工算子能力清单
视频类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签和评分等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的加工操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。
构建的优点是数据丰富度更高,缺点是成本较高。 当您将无监督数据构建为有监督数据时,请尽可能保证数据的多样性。建议将不同文本构建为不同的场景,甚至将同一段文本构建为多个不同的场景。 不同规格的模型支持的长度不同,当您将无监督数据构建为有监督数据时,请确保数据长度符合模型长度限制。 父主题:
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题
信息。 数据版权设置。训练模型的数据集除用户自行构建外,也可能会使用开源的数据集。数据版权功能主要用于记录和管理数据集的版权信息,确保数据的使用合法合规,并清晰地了解数据集的来源和相关的版权授权。通过填写这些信息,可以追溯数据的来源,明确数据使用的限制和许可,从而保护数据版权并避免版权纠纷。
数据预处理:数据预处理是数据准备过程中的重要环节,旨在提高数据质量和适应模型的需求。常见的数据预处理操作包括: 去除重复数据:确保数据集中每条数据的唯一性。 填补缺失值:填充数据中的缺失部分,常用方法包括均值填充、中位数填充或删除缺失数据。 数据标准化:将数据转换为统一的格式或范围,特别是在处理数值型数据时(如归一化或标准化)。
盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和数据主权保护等机制。在训练和推理过程中,通过数据脱敏、隐私计算