内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之代价函数

            深度神经网络设计中的一个重要方面是代价函数的选择。幸运的是,神经网络的代价函数或多或少是其他的参数模型例如线性模型的代价函数相同的。       在大多数情况下,我们的参数模型定义了一个分布 p(y | x; θ) 并且我们简单地使用最大似然原理。这意味着我们使

    作者: 小强鼓掌
    741
    2
  • 深度学习入门》笔记 - 20

    因变量的常见数据类型有三种:定量数据、二分类定性数据多分类定性数据。输出层激活函数的选择主要取决于因变量的数据类型。MNIST数据集是机器学习文献中常用的数据。因变量(0~9)用独热码表示,比如数字8的独热码为(0 0 0 0 0 0 0 0 1 0)数字2的读热码为(0 0 1

    作者: 黄生
    25
    1
  • 深度学习之正则化

    没有免费午餐定理暗示我们必须在特定任务上设计性能良好的机器学习算法。我们建立一组学习算法的偏好来达到这个要求。当这些偏好和我们希望算法解决的学习问题相吻合时,性能会更好。        至此,我们具体讨论修改学习算法的方法只有,通过增加或减少学习算法可选假设空间的函数来增加或减少模型的容量。

    作者: 小强鼓掌
    836
    3
  • 深度学习之maxout 单元

    maxout 层可以学习实现传统层相同的输入 x 的函数,这些传统层可以使用整流线性激活函数、绝对值整流、渗漏整流线性单元 或参数化整流线性单元,或者可以学习实现与这些都不同的函数。maxout 层的参数化当然也将与这些层不同,所以即使是 maxout 学习去实现其他种类的层相同的

    作者: 小强鼓掌
    1104
    1
  • 深度学习之噪声鲁棒性

    要用于循环神经网络 (Jim et al., 1996; Graves, 2011)。这可以被解释为关于权重的贝叶斯推断的随机实现。贝叶斯学习过程将权重视为不确定的,并且可以通过概率分布表示这种不确定性。向权重添加噪声是反映这种不确定性的一种实用的随机方法。

    作者: 小强鼓掌
    638
    1
  • 深度学习之贝叶斯统计

    的已知知识表示成先验概率分布 (prior probability distribution),p(θ)(有时简单地称为 “先验”)。一般而言,机器学习实践者会选择一个相当宽泛的(即,高熵的)先验分布,反映在观测到任何数据前参数 θ 的高度不确定性。例如,我们可能会假设先验 θ 在有限区间中均匀分布。许多先验偏好于“更简单”

    作者: 小强鼓掌
    619
    1
  • 深度学习之对抗样本

    回归,由于它们被限制为线性而无法抵抗对抗样本。神经网络能够将函数从接近线性转化为局部近似恒定,从而可以灵活地捕获到训练数据中的线性趋势同时学习抵抗局部扰动。

    作者: 小强鼓掌
    631
    3
  • 深度学习之信息论

    以及计算从一个特定的概率分布上采样得到、使用多种不同的编码机制的消息的期望长度。在机器学习中,我们也可以把信息论应用在连续型变量上,而信息论中一些消息长度的解释不怎么使用。信息论是电子工程计算机科学的许多领域的基础。在本书中,我们主要使用信息论的一些关键思想来描述概率分布或者量化概率分布之间的相似性。 

    作者: 小强鼓掌
    624
    3
  • 深度学习之验证集

    早先我们讨论过训练数据相同分布的样本组成的测试集可以用来估计学习过程完成之后的学习器的泛化误差。其重点在于测试样本不能以任何形式参与到模型的选择,包括设定超参数。基于这个原因,测试集中的样本不能用于验证集。因此,我们总是从训练数据中构建验证集。特别地,我们将训练数据分成两个不相

    作者: 小强鼓掌
    730
    1
  • 深度学习之复杂化

    正如前面提到的,我们将操作的定义限制为返回单个张量的函数。大多数软件实现需要支持可以返回多个张量的操作。例如,如果我们希望计算张量中的最大值该值的索引,则最好在单次运算中计算两者,因此将该过程实现为具有两个输出的操作效率更高。我们还没有描述如何控制反向传播的内存消耗。反向传播经常

    作者: 小强鼓掌
    421
    0
  • 深度学习之反向传播算法

    使得反向传播只有 O(n) 的成本。这远远胜过简单的方法,简单方法可能需要在指数级的节点上运算。这种潜在的指数级代价可以通过非递归地扩展重写递归链式法则

    作者: 小强鼓掌
    425
    0
  • 深度学习之交叉验证

    数据集分成固定的训练集固定的测试集后,若测试集的误差很小,这将是有问题的。一个小规模的测试集意味着平均测试误差估计的统计不确定性,使得很难判断算法 A 是否比算法 B 在给定的任务上做得更好。当数据集有十万计或者更多的样本时,这不会是一个严重的问题。当数据集太小时,也有替代方法

    作者: 小强鼓掌
    935
    3
  • 深度学习Sigmoid 激活函数

    Sigmoid 函数的图像看起来像一个 S 形曲线。

    作者: 我的老天鹅
    422
    4
  • 深度学习GoogLeNet结构

    作者: 我的老天鹅
    426
    7
  • 深度学习入门》笔记 - 02

    26687508822.png) 矩阵的基本运算就是加减乘除。加减法如果这两个矩阵的维度是一样的,就非常好理解。矩阵也可以行向量进行加减,要求行向量的列数矩阵的列数是一样的。 矩阵的乘法,如果两个矩阵的维度一样,也非常好理解,这种叫做`逐点相乘`(element-wise product)。

    作者: 黄生
    54
    0
  • 深度学习之计算图

    为了更精确地描述反向传播算法,使用更精确的计算图(computational graph)语言是很有帮助的。将计算形式化为图形的方法有很多。这里,我们使用图中的每一个节点来表示一个变量。变量可以是标量、向量、矩阵、张量、或者甚至是另一类型的变量。为了形式化我们的图形,我们还需引入

    作者: 小强鼓掌
    950
    3
  • 深度学习——常用评价指标

    负样本;  (3)每次选取一个不同的threshold,我们就可以得到一组FPRTPR,即ROC曲线上的一点。    当我们将threshold设置为10时,分别可以得到ROC曲线上的(0,0)(1,1)两个点。将这些(FPR,TPR)对连接起来,就得到了ROC曲线。当th

    作者: QGS
    784
    3
  • 深度学习之交叉验证

            将数据集分成固定的训练集固定的测试集后,若测试集的误差很小,这将是有问题的。一个小规模的测试集意味着平均测试误差估计的统计不确定性,使得很难判断算法 A 是否比算法 B 在给定的任务上做得更好。        当数据集有十万计或者更多的样本时,这不会是一个严重的

    作者: 小强鼓掌
    828
    3
  • 深度学习之Dropout启发

    ut描述为通过包括或排除单元形成模型集成的Bagging。然而,这种参数共享策略不一定要基于包括排除。原则上,任何一种随机的修改都是可接受的。在实践中,我们必须选择让神经网络能够学习对抗的修改类型。在理想情况下,我们也应该使用可以快速近似推断的模型族。我们可以认为由向量 µ 参数化的任何形式的修改,是对

    作者: 小强鼓掌
    547
    1
  • 浅谈深度学习模型压缩

    teacher-student模型是迁移学习的一种,迁移学习也就是将一个模型的性能迁移到另一个模型上,对于教师网络往往是一个更加复杂的网络,具有非常好的性能泛化能力,可以用这个网络来作为一个soft target来指导另外一个更加简单的学生网络来学习,使得更加简单、参数运算量更少的学生模型也能够具有教师网络相近的性能  

    作者: QGS
    40
    1