内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之任务 T

            机器学习可以让我们解决一些人为设计实现固定程序很难解决的问题。从科学哲学的角度来看,机器学习受到关注是因为提高我们对机器学习的认识需要提高我们对智能背后原理的理解。       如果考虑 “任务”比较正式的定义,那么学习的过程并不是任务。       在相对正式的

    作者: 小强鼓掌
    727
    2
  • 深度学习之代价函数

            深度神经网络设计中的一个重要方面是代价函数的选择。幸运的是,神经网络的代价函数或多或少是其他的参数模型例如线性模型的代价函数相同的。       在大多数情况下,我们的参数模型定义了一个分布 p(y | x; θ) 并且我们简单地使用最大似然原理。这意味着我们使

    作者: 小强鼓掌
    741
    2
  • 深度学习之正则化

    没有免费午餐定理暗示我们必须在特定任务上设计性能良好的机器学习算法。我们建立一组学习算法的偏好来达到这个要求。当这些偏好和我们希望算法解决的学习问题相吻合时,性能会更好。        至此,我们具体讨论修改学习算法的方法只有,通过增加或减少学习算法可选假设空间的函数来增加或减少模型的容量。

    作者: 小强鼓掌
    836
    3
  • 深度学习之maxout 单元

    maxout 层可以学习实现传统层相同的输入 x 的函数,这些传统层可以使用整流线性激活函数、绝对值整流、渗漏整流线性单元 或参数化整流线性单元,或者可以学习实现与这些都不同的函数。maxout 层的参数化当然也将与这些层不同,所以即使是 maxout 学习去实现其他种类的层相同的

    作者: 小强鼓掌
    1104
    1
  • 深度学习入门》笔记 - 08

    (pred)) print('w=3时,残差平方:'+str(round(rss,ndigits=3))) print('w=3时,RSS(w)的梯度:'+str(grad)) #w=3时,预测值:1.5 #w=3时,残差平方:0.245 #w=3时,RSS(w)的梯度:0.35

    作者: 黄生
    148
    3
  • 深度学习之验证集

    早先我们讨论过训练数据相同分布的样本组成的测试集可以用来估计学习过程完成之后的学习器的泛化误差。其重点在于测试样本不能以任何形式参与到模型的选择,包括设定超参数。基于这个原因,测试集中的样本不能用于验证集。因此,我们总是从训练数据中构建验证集。特别地,我们将训练数据分成两个不相

    作者: 小强鼓掌
    730
    1
  • 浅谈深度学习模型压缩

    teacher-student模型是迁移学习的一种,迁移学习也就是将一个模型的性能迁移到另一个模型上,对于教师网络往往是一个更加复杂的网络,具有非常好的性能泛化能力,可以用这个网络来作为一个soft target来指导另外一个更加简单的学生网络来学习,使得更加简单、参数运算量更少的学生模型也能够具有教师网络相近的性能  

    作者: QGS
    40
    1
  • 深度学习之动量举例

    为什么要特别使用 −v(t) 粘性阻力呢?部分原因是因为 −v(t) 在数学上的便利——速度的整数幂很容易处理。然而,其他物理系统具有基于速度的其他整数幂的其他类型的阻力。例如,颗粒通过空气时会受到正比于速度平方的湍流阻力,而颗粒沿着地面移动时会受到恒定大小的摩擦力。这些选择都

    作者: 小强鼓掌
    420
    2
  • 深度学习之交叉验证

    数据集分成固定的训练集固定的测试集后,若测试集的误差很小,这将是有问题的。一个小规模的测试集意味着平均测试误差估计的统计不确定性,使得很难判断算法 A 是否比算法 B 在给定的任务上做得更好。当数据集有十万计或者更多的样本时,这不会是一个严重的问题。当数据集太小时,也有替代方法

    作者: 小强鼓掌
    935
    3
  • 深度学习Sigmoid 激活函数

    Sigmoid 函数的图像看起来像一个 S 形曲线。

    作者: 我的老天鹅
    422
    4
  • 深度学习GoogLeNet结构

    作者: 我的老天鹅
    426
    7
  • 深度学习之计算图

    为了更精确地描述反向传播算法,使用更精确的计算图(computational graph)语言是很有帮助的。将计算形式化为图形的方法有很多。这里,我们使用图中的每一个节点来表示一个变量。变量可以是标量、向量、矩阵、张量、或者甚至是另一类型的变量。为了形式化我们的图形,我们还需引入

    作者: 小强鼓掌
    950
    3
  • 深度学习入门》笔记 - 02

    26687508822.png) 矩阵的基本运算就是加减乘除。加减法如果这两个矩阵的维度是一样的,就非常好理解。矩阵也可以行向量进行加减,要求行向量的列数矩阵的列数是一样的。 矩阵的乘法,如果两个矩阵的维度一样,也非常好理解,这种叫做`逐点相乘`(element-wise product)。

    作者: 黄生
    54
    0
  • 深度学习——常用评价指标

    负样本;  (3)每次选取一个不同的threshold,我们就可以得到一组FPRTPR,即ROC曲线上的一点。    当我们将threshold设置为10时,分别可以得到ROC曲线上的(0,0)(1,1)两个点。将这些(FPR,TPR)对连接起来,就得到了ROC曲线。当th

    作者: QGS
    784
    3
  • 深度学习之交叉验证

            将数据集分成固定的训练集固定的测试集后,若测试集的误差很小,这将是有问题的。一个小规模的测试集意味着平均测试误差估计的统计不确定性,使得很难判断算法 A 是否比算法 B 在给定的任务上做得更好。        当数据集有十万计或者更多的样本时,这不会是一个严重的

    作者: 小强鼓掌
    828
    3
  • 深度学习之批量算法

    机器学习算法一般优化算法不同的一点是,机器学习算法的目标函数通常可以分解为训练样本上的求和。机器学习中的优化算法在计算参数的每一次更新时通常仅使用整个代价函数中一部分项来估计代价函数的期望值。另一个促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的

    作者: 小强鼓掌
    972
    3
  • 深度学习入门》笔记 - 10

    iter: 19; w: 1.49; Loss: 0.002 ``` 把这循环的过程中的变化可视化出来: ```python #模型参数w 残差平方RSS 随迭代的变化曲线 w_vec=np.linspace(-1,4,100) rss_vec=[] for w_tmp in w_vec:

    作者: 黄生
    220
    1
  • 深度学习之模板匹配

    训练标签 y 相关的训练样本 x 变成了类别 y 的模版。当测试点 x′ 到 x 的欧几里得距离很小时,对应的高斯核很大,表明 x′ 模版 x 非常相似。该模型进而会赋予相对应的训练标签 y 较大的权重。总的来说,预测将会组合很多这种通过训练样本相似性加权的训练标签。支持向量机

    作者: 小强鼓掌
    550
    1
  • 深度学习之机器学习的算法效果

    降低训练误差        2. 缩小训练误差测试误差的差距        这两个因素对应机器学习的两个主要挑战:欠拟合(underfitting) 过拟合(overfitting)。欠拟合发生于模型不能在训练集上获得足够低的误差。过拟合发生于训练误差和和测试误差之间的差距太大。   

    作者: 小强鼓掌
    726
    3
  • 深度学习之贝叶斯统计

    的已知知识表示成先验概率分布 (prior probability distribution),p(θ)(有时简单地称为 “先验”)。一般而言,机器学习实践者会选择一个相当宽泛的(即,高熵的)先验分布,反映在观测到任何数据前参数 θ 的高度不确定性。例如,我们可能会假设先验 θ 在有限区间中均匀分布。许多先验偏好于“更简单”

    作者: 小强鼓掌
    720
    4