检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
TICS权限管理 如果您需要对华为云上购买的TICS资源,给企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(Identity and Access Management,简称IAM)进行精细的权限管理。该服务提供用户身份认证、权限分配、访问控制等功能
运行作业前,提示“Privacy rule verification failed”,怎么处理? 当在作业编辑页面编写SQL语句,并试图运行时,右上角提示“Privacy rule verification failed”。 原因是SQL语句中存在使用隐患字段的情况。 请根据具体提示
什么是区域和可用区? 什么是区域、可用区? 用区域和可用区来描述数据中心的位置,您可以在特定的区域、可用区创建资源。 区域(Region)指物理的数据中心。每个区域完全独立,这样可以实现较大程度的容错能力和稳定性。资源创建成功后不能更换区域。 可用区(AZ,Availability
准备数据 (可选)准备MRS Hive数据源 如果您的数据需通rds_02_0008过MRS Hive发布到TICS,则您需要提前准备MRS Hive数据源。 准备数据步骤如下: 购买MRS服务,操作步骤参考创建集群章节,且MRS服务的VPC必须与计算节点部署节点处于同一个VPC内
签署合约 用数方在接受到供数方发送的数据合约,若满足需求或与前期约定一致,可签署合约,若不一致,可选择拒绝合约。 前提条件 空间组建完成,参考组建空间。 空间成员完成计算节点部署,配置参数时选择挂载方式和数据目录,参考部署计算节点。 空间成员在计算节点中完成数据发布,参考发布数据。
筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练特征
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
创建隐私求交作业 前提条件 参与计算的双方需要在其代理节点上创建好各自的数据集,并需要确保数据集含有非敏感的唯一标识字段。 创建作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 隐私求交”,打开隐私求交作业列表页面。 在隐私求交作业列表页面,单击“创建”。 图
实时预测 实时预测通过在计算节点部署在线预测服务的方式,允许用户利用POST请求,在毫秒级时延内获取单个样本的预测结果。 创建实时预测作业 执行实时预测作业 删除实时预测作业 父主题: 联邦预测作业
评估型横向联邦作业流程 基于横向联邦作业的训练结果,可以进一步评估横向联邦模型,将训练好的模型用于预测。 选择对应训练型作业的“历史作业”按钮,获取最新作业的模型结果文件路径。 图1 查看模型结果文件的保存位置 前往工作节点上步骤1展示的路径,下载模型文件。由于Logistic Regression
创建数据集时,不允许使用哪些名字? 问题描述 创建数据集时,对数据集名字有一定约束。 解决办法 创建数据集时,不允许使用如下名字: <EOF> A ABS ABSENT ABSOLUTE ACTION ADA ADD ADMIN AFTER ALL ALLOCATE ALLOW ALTER
场景描述 背景信息 本案例以“小微企业信用评分”的场景为例。 社保、水电气和资助金等数据统一存储在某政务云,由不同的局进行管理,机构想单独申请进行企业相关评分的计算会非常困难。 因此可以由市政数局出面,统一制定隐私规则,审批数据提供方的数据使用申请, 并通过华为TICS可信智能计算平台进行安全计算
概述 联邦预测作业在保障用户数据安全、模型资产安全的前提下,利用多方数据和模型实现样本联合预测。 目前TICS支持两种类型的预测方式: 批量预测: 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 实时预测: 实时预测通过在计算节点部署在线预测服务的方式
授权IAM用户使用TICS 如果您需要对您所拥有的TICS进行精细的权限管理,您可以使用统一身份认证服务(Identity and Access Management,简称IAM)。通过IAM,您可以: 根据企业的业务组织,在您的华为账号中,给企业中不同职能部门的员工创建IAM用户
确认申请 供数方接受用数方的数据使用需求,审视是否符合用数方需求或与前期的约定一致,若不符合,可拒绝申请;若符合,则确认申请,接下来便拟定合约,发送给用数方签署。 前提条件 存在已创建的申请。 约束限制 仅供数方操作,即该数据集的提供方去确认申请。 用数方提交申请后未撤回的申请,一旦供数方确认申请
查看求交结果 隐私求交作业执行完成后,企业A可以通过单击“历史作业 > 查看结果”看到隐私求交作业的运行结果,包括交集的大小和交集文件的路径。 打开obs到指定目录下查看,可以看到有两个结果文件,其中一个是交集记录的序号alignedIds.csv,另一个是交集记录的id alignedOriginalIds.csv
创建批量预测作业 前提条件 空间组建完成,参考组建空间。 空间成员完成计算节点部署,配置参数时选择挂载方式和数据目录,参考部署计算节点。 空间成员在计算节点中完成数据发布,参考发布数据。 参与方的计算节点如果是采用云租户部署,并且使用子账号进行创建的,需要参考配置CCE集群子账号权限
训练型横向联邦作业流程 联邦学习分为横向联邦及纵向联邦。相同行业间,特征一致,数据主体不同,采用横向联邦。不同行业间,数据主体一致,特征不同,采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果
功能总览 功能总览 全部 空间管理 计算节点管理 多方安全计算作业 可信联邦学习作业 联邦预测作业 空间管理 空间是联邦计算的载体。合作方只有加入空间才能参与联邦计算。空间为首个成员部署计算节点时创建。首个成员空间内的别名为默认league_creator。空间名在创建者租户范围内唯一