检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
步骤完成Notebook的创建。 登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界面,单击右上角“创建”,创建一个开发环境。创建Notebook的详细介绍可以参考创建Notebook实例,此处仅介绍关键步骤。 图1 创建Notebook 创建Noteb
步骤完成Notebook的创建。 登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界面,单击右上角“创建”,创建一个开发环境。创建Notebook的详细介绍可以参考创建Notebook实例,此处仅介绍关键步骤。 图1 创建Notebook 创建Noteb
步骤完成Notebook的创建。 登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界面,单击右上角“创建”,创建一个开发环境。创建Notebook的详细介绍可以参考创建Notebook实例,此处仅介绍关键步骤。 创建Notebook时,选择自定义镜像,并选择Step8
步骤完成Notebook的创建。 登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界面,单击右上角“创建”,创建一个开发环境。创建Notebook的详细介绍可以参考创建Notebook实例,此处仅介绍关键步骤。 图1 创建Notebook 创建Noteb
Snt3,可以等待其他用户释放,即其他使用Ascend Snt3芯片的服务停止,您即可选择此资源进行部署上线。 方法2:如果专属资源池还有Ascend Snt3资源,您可以创建一个Ascend Snt3专属资源池使用。 方法3:如果专属资源池的Ascend Snt3资源也已售罄,则需等待其他用户删除Ascend Snt3实例后,您才可以创建Ascend
py。 训练结果、日志、checkpoints上传。(本地使用硬盘挂载或者docker cp,在ModelArts上使用OBSutil) 可以用一个run脚本把整个流程包起来。run.sh脚本的内容可以参考如下示例: #!/bin/bash ##认证用的AK和SK硬编码到代码中或者明
安装文件规范 请根据依赖包的类型,在代码目录下放置对应文件: 依赖包为开源安装包时 暂时不支持直接从github的源码中安装。 在“代码目录”中创建一个命名为“pip-requirements.txt”的文件,并且在文件中写明依赖包的包名及其版本号,格式为“包名==版本号”。 例如,“代码
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.906)
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6
来稳定训练过程。PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型
选择需查看数据集,单击名称左侧小三角,展开数据集详情。可获得“数据集输出位置”指定的OBS路径。 获取标注信息前,需确保数据集已发布,至少有一个以上数据集版本。 图1 数据集详情 进入OBS管理控制台,根据上述步骤获得的路径,找到对应版本号目录,即可获取数据集对应的标注结果。 图2
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.905)
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6
署,工作流发布至运行态后,部分运行的开关默认关闭,节点全部运行。用户可在权限管理页面打开开关,选择指定的场景进行运行。 部分运行能力支持同一个节点被定义在不同的运行场景中,但是需要用户自行保证节点之间数据依赖的正确性。另外,部分运行能力仅支持在运行态进行配置运行,不支持在开发态进行调试。
PyTorch Profiler接口,可在训练过程中采集性能数据文件,包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等。 包含在torch_npu包中。 Ascend PyTorch Profiler数据采集与分析 MA-Advisor 性能自动诊断
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3