检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
您还可以通过这个视频教程了解如何构造请求调用API:https://bbs.huaweicloud.com/videos/102987 。 请求示例如图1,一个请求主要由请求URI、请求方法、请求消息头和请求消息体组成。 图1 请求示例图 请求URI 请求URI由如下部分组成: {URI-scheme}
您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 以下给出了几种正常的Loss曲线形式: 图1 正常的Loss曲线:平滑下降 图2 正常的Loss曲线:阶梯下降
内容时。 为了解决这些问题,构建一个自动化的多语言翻译工作流显得尤为重要。通过集成翻译工具(如机器翻译API、大型语言模型等),可以在保证翻译效率的同时,提升翻译质量,并根据实际场景和用户需求进行灵活调整。 本章将详细介绍如何利用不同的节点构建一个高效的多语言文本翻译工作流,并确
如何分析大模型输出错误回答的根因 大模型的输出过程通常是一个黑盒,涉及数以亿计甚至千亿计的参数计算,虽然这些参数共同作用生成输出,但具体的决策机制并不透明。 可以通过在提示词中引导模型输出思考过程,或者在模型输出后追问模型,帮助我们分析错误的根因。例如: “我注意到你犯了xxx的错误,请解释得出该结论的原因。”
大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根
他们的成长。而且这款毛绒玩每一个细节都呈现出了无限的童真和天真,真的是太可爱了!\n\n除了可爱外,这款毛绒玩具还有一个很重要的功能,它能给孩子带来无限温暖的拥抱。当孩子感到孤独或者失落时,它就像一个亲密的好友一样,安慰着他们的心灵。就像你给亲人一个紧紧的拥抱,让他们感受到你的爱
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可
民共和国民法典》谁起草的?”冲突,模型遵从了前一个指令,如果希望模型执行后一个指令,回答问题,可以将文本内容用引号分隔,让模型了解到引号内非指令,而是提供的参考文本。 排顺序 在提示词中内容的顺序也很重要,基于盘古大模型调优经验,将关键信息放在结尾处,模型输出效果更好。不同任务的
盘古预测大模型数据集构建流程 流程 子流程 说明 操作指导 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 导入数据至盘古平台 发布预测类数据集 流通预测类数据集 数据流通是将单个数据集发布为特定格式的“发布数据集”,用于后续模型训练等操作。 发布预测类数据集
图片元数据过滤 基于图片存储大小、宽高比属性进行图片/图文数据清洗。 图文文本长度过滤 过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。
Agent开发 Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户):
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的
在撰写提示词页面,找到页面右侧变量输入区域,在输入框中输入具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 效果预览 单击“查看效果”,输出模型回复结果,用户可以基于预览的效果调整提示词文本和变量。
会导致模型的结果文件变大,可能会占用大量的显存。在设置深度时,需要权衡模型的复杂性和显存的使用情况。推荐设置为[2, 6]。 补丁尺度 用于将气象场划分为多个小块的大小,每个小块都会被模型单独处理。较大的patch_size意味着模型主干部分的一个网格代表更大范围的区域,但局部的
工作流,面向城市政务场景的碎片化长尾需求,将传统的“专家式”、“作坊式”开发模式转变为“流水线”生产。 在城市政务“一网统管”的场景中,往往建设有庞大复杂的城市事件类别体系,包含了繁多细碎的事项类别,如垃圾暴露、道路破损、围栏破损等,一个城市一般有几百种事件类别。同时,不同城市可
预置插件:平台当前为用户提供了“Python解释器”插件,支持开发者直接将插件添加到Agent中,丰富Agent的能力。 自定义插件:平台支持开发者创建自定义插件。支持开发者将工具、Function或者API通过配置方式快速创建为一个插件,并供Agent调用。 自定义知识库:平台提供了知识库功
大模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模
其中,单个cls类别目录下的每个三级目录为一个样本,例如cls1文件的样本为aa和bb。 所有样本文件夹(如 aa)包含的图片数量相等,例如cls1样本aa和bb、cls1样本aa和cls2的样本cc。 每个样本文件夹(如 aa)可以视为一个视频片段,其中每张图片代表视频的一个帧,将这些帧作为一个序列来学习视
"text": "故事标题:《穿越宋朝的奇妙之旅》在一个阴雨绵绵的夜晚,一个名叫李晓的年轻人正在阅读一本关于宋朝的历史书籍。突然,他感到一阵眩晕,当他再次睁开眼睛时,他发现自己身处一个完全陌生的地方。李晓发现自己穿越到了宋朝。他身处一座繁华的城市,人们穿着古
流通文本类数据集 数据流通是将单个数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。 单个文本类数据集支持发布的格式为: 默认格式:平台默认的格式。 在默认格式中,context和target是键值对。示例如下: {"context": "你好,请介绍自己", "target":