检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建自监督微调训练任务 创建自监督微调训练任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,设置模型类型、训练类型、训练模型、训练参数和checkpoints等参数。 其中,训练配置选
AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要包含一个签名值,该签名值以请求者的访问密钥(AK/SK)作为加密因子,结合请求体携带的特定信息计算而成。通过访问密钥(AK/SK)认证方式进行认证鉴权,即使用Access
使用Postman调用API时,如果出现SSL证书无效相关的报错,如“self signed certificate”(自签名证书)、“certificate has expired”(证书已过期)或“unable to verify the first certificate”(无法验证第一个证书)等。可以在Postman的设置中关闭“SSL
1. 在任何情况下都不要破坏角色。 2. 不要编造事实。 ## 初始化 身为一名旅行规划助手,我必须遵守规则,我必须用默认的语言和用户交谈,如果用户没有输入问题,我会介绍我自己和我的工作流程,等待用户的提问。 图1 创建AI助手 单击“立即创建”完成AI助手的创建工作。 父主题:
创建有监督训练任务 创建有监督微调训练任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,选择模型类型、训练类型、训练方式、训练模型与训练参数。 其中,训练配置选择LLM(大语言模型),
中看到接口的返回信息。 图10 获取盘古API调用结果 使用Postman调用API时,如果出现SSL证书无效相关的报错,如“self signed certificate”(自签名证书)、“certificate has expired”(证书已过期)或“unable to verify
创建训练任务 创建自监督微调训练任务 创建有监督训练任务 父主题: 训练盘古大模型
求进行加密签名。 SK(Secret Access Key):与访问密钥ID结合使用的密钥,对请求进行加密签名,可标识发送方,并防止请求被修改。 使用AK/SK认证时,您可以基于签名算法使用AK/SK对请求进行签名,也可以使用专门的签名SDK对请求进行签名。详细的签名方法和SDK使用方法请参见API签名指南。
选中需要评估的候选提示词,单击左上角“创建评估”按钮,跳转评估任务创建页面。 图2 创建评估 选择评估使用的变量数据集和评估方法。 数据集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。 评估方法:根据选择的评估方法,对模型生成结果和预期结果进行比较,并根据算法给出相应的得分。
创建数据集清洗任务 数据集创建完成后,可以使用数据清洗功能,对异常数据进行清理,或进行数据转换、过滤和去重等操作。 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据清洗”,单击界面右上角“创建任务”。 图1 数据清洗 依据需要清洗的数据类型,选择对应的数据集和数据
在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 单击页面右上角“创建工程”,进入工程任务创建弹窗。输入工程名称、描述,选择行业、标签,工程任务下的所有提示词会同步继承该标签。 图1 创建提示词工程 单击“确定”完成工程创建。 父主题: 撰写提示词
创建模型评估数据集 在收集评估数据集时,应确保数据集的独立性和随机性,并使其能够代表现实世界的样本数据,以避免对评估结果产生偏差。对评估数据集进行分析,可以帮助了解模型在不同情境下的表现,从而得到模型的优化方向。 在“数据工程 > 数据管理”中创建“评测”类型的数据集作为评估数据集,数据集创建完成后需要执行发布操作。
理,您可以跳过本章节,不影响您使用盘古的其他功能。 创建用户组 使用主账号登录IAM服务控制台。 左侧导航窗格中,选择“用户组”页签,单击右上方的“创建用户组”。 图1 创建用户组 在“创建用户组”界面,输入“用户组名称”,创建用户组。 返回用户组列表,单击列表中的“授权”。 图2
创建模型评估任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型评估”。 单击界面右上角“创建评估任务”,进入评估任务创建页面。 图1 模型评估列表页面 填写评估任务所需的评估配置、评估数据和基本信息。 图2 创建评估任务 评估配置: 待评估模型:支持选择多个模
数据管理”,单击界面右上角“创建数据集”。 图1 数据管理 在创建数据集弹框中选择“创建一个新的数据集”,单击“创建”。 图2 创建数据集 在创建数据集页面,单击“前往OBS”,进入OBS服务页面。 图3 前往OBS 在OBS控制台页面,单击界面右上角“创建桶”。 图4 OBS页面 创建OBS桶时
也要考虑模型在特定领域的性能。 创建一个训练数据集 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,单击界面右上角“创建数据集”。 图1 数据管理 在创建数据集弹出框中选择“创建一个训练数据集”,单击“创建”。 图2 创建训练数据集 进入训练数据集页面后,需要进行训练配置、数据配置和基本配置。
训练数据集创建流程 数据是大模型训练的基础,提供了模型学习所需的知识和信息。大模型通过对大量数据的学习,能够理解并抽象出其中的复杂模式,从而进行精准的预测和决策。在训练过程中,数据的质量和多样性至关重要。高质量的数据能够提升模型对任务的理解,而多样化的数据则帮助模型更好地应对各种
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
数据单条文本长度不超过1000。 创建数据集时会对相关限制条件进行校验。 数据参考格式 图1 数据参考格式 图2 数据示例 创建提示词评估数据集 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 提示用例管理”。 图3 提示用例管理 单击页面右上角“创建提示用例集”,进入创建弹窗。 单击存
SDK依赖的配置项主要通过加载llm.properties配置文件。 在项目路径下,创建llm.properties文件,并根据实际需要配置相应的值。 在环境变量中配置“SDK_CONF_PATH”指向该配置文件: # 建议在业务项目入口处配置 import os os.environ["SDK_CONFIG_PATH"]