检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
<baseline>:<可选>GP-Ant8机器精度基线Yaml文件路径,不填则使用工具自带基线配置,包含loss、score、mmlu_score、ceval_score基线值;默认基线配置样例如下: 客户使用工具自带精度基线Yaml则需使用accuracy_cfgs.yaml文件中默认配置,权重使用表1
yaml相对或绝对路径,此配置文件为训练最优配置参数。 --baseline <baseline>:<可选>GP-Ant8机器性能基线yaml文件路径,用户可自行修改,不填则使用工具自带基线配置,默认基线配置样例如下: --o <output_dir>: <可选>任务完成输出excel表格路径,默认为"./"当前所在路径。
yaml相对或绝对路径,此配置文件为训练最优配置参数。 --baseline <baseline>:<可选>GP-Ant8机器性能基线yaml文件路径,用户可自行修改,不填则使用工具自带基线配置,默认基线配置样例如下: --o <output_dir>: <可选>任务完成输出excel表格路径,默认为"./"当前所在路径。
服务部署、启动、升级和修改时,容器健康检查失败如何处理? 问题现象 服务部署、启动、升级和修改时,容器健康检查失败。 原因分析 容器提供的健康检查接口调用失败。容器健康检查接口调用失败,原因可能有两种: 镜像健康检查配置问题 模型健康检查配置问题 解决方法 根据容器日志进行排查,查看健康检查接口失败的具体原因。
msprobe是MindStudio Training Tools工具链下精度调试部分的工具包,主要包括精度预检、溢出检测和精度比对等功能,目前适配PyTorch和MindSpore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 精度预检工具旨在计算单个API在整网计算中和标杆场景下
单模型性能测试工具Mindspore lite benchmark 在模型精度对齐后,针对Stable Diffusion模型性能调优,您可以通过AOE工具进行自助性能调优,进一步可以通过profiling工具对于性能瓶颈进行分析,并针对性地做一些调优操作。 您可以直接使用ben
使用Advisor工具分析生成调优建议 关于Advisor使用及安装过程请参见昇腾社区Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train
Code接入并在新界面单击打开,未弹出VS Code窗口 原因分析 未安装VS Code或者安装版本过低。 解决方法 下载并安装VS Code(Windows用户请单击“Win”,其他用户请单击“其他”下载),安装完成后单击“刷新”完成连接。 父主题: VS Code连接开发环境失败故障处理
文件夹“.ssh”的权限不仅是Windows当前用户拥有,或者当前用户权限不足,故修改权限即可。 解决方案 找到.ssh文件夹。一般位于“C:\Users”,例如“C:\Users\xxx”。 “C:\Users”目录下的文件名必须和Windows登录用户名完全一致。 右键单击.
debugger.start() # 一般在训练循环开头启动工具。 ... # 循环体 debugger.stop() # 一般在训练循环末尾结束工具。 debugger.step() # 在训练循环的最后需要重置工具,非循环场景不需要。 具体的config.json的配置要求请参见介绍。
msprobe梯度监控 梯度监控工具提供了将模型梯度数据导出的能力。使用梯度监控工具,可以实现对训练过程模型每一层梯度信息进行监控,目前支持两种能力: 将模型权重的梯度数据导出。这种功能可以将模型权重的梯度值以统计量的形式采集出来,用以分析问题,例如检测确定性问题,使用训练状态监控工具监控NPU训练过程中的确定性计算问题。
PD分离性能调优工具使用说明 PD分离性能调优工具包括两个脚本工具: 性能测试脚本与数据可视化脚本。 PD分离调优时需要使用性能测试脚本分别跑出混推与PD分离的性能数据, 并使用数据可视化工具将两个场景的数据绘制在一起,进行对比分析收益。 PD混合推理性能评测 PD混合推理性能测试执行脚本如下所示:
MindStudio-Insight性能可视化工具使用指导 对于高阶的调优用户,可以使用可视化工具MindStudio Insight查看profiling数据详情并分析可优化点,其提供了丰富的调优分析手段,可视化呈现真实软硬件运行数据,多维度分析性能瓶颈点,支持百卡、千卡及以上
行故障诊断,得到诊断结果。 Ascend FaultDiag工具官方指导请见Ascend FaultDiag工具使用指导。 Ascend FaultDiag工具下载地址请见Ascend FaultDiag 故障诊断工具。 步骤一:日志采集 共需要采集6类日志:用户训练打屏日志,主机侧操作系统日志(Host日志),
MA-Advisor性能调优建议工具使用指导 MA-Advisor是一款迁移性能问题自动诊断工具,其集成了昇腾自动诊断工具msprof-analyze,并在ModelArts Standard的Jupyter lab平台进行了插件化,能快速分析和诊断昇腾场景下PyTorch性能劣化问题并给出相关调优建议。
装。 C:\Users\xxx>python --version Python *.*.* 检查是否已安装Python通用包管理工具pip。如果Python安装过程中没有安装通用包管理工具pip,则参见pip官网完成pip安装,推荐pip版本小于24.0。 在本地环境执行命令pip
yaml相对或绝对路径,此配置文件为训练最优配置参数。 --baseline <baseline>:<可选>GP-Ant8机器性能基线yaml文件路径,用户可自行修改,不填则使用工具自带基线配置,默认基线配置样例如下: --o <output_dir>: <可选>任务完成输出excel表格路径,默认为"./"当前所在路径。
<baseline>:<可选>GP-Ant8机器精度基线Yaml文件路径,不填则使用工具自带基线配置,包含loss、score、mmlu_score、ceval_score基线值;默认基线配置样例如下: 客户使用工具自带精度基线Yaml则需使用modellink_accuracy_baseline
网络调整公告 ModelArts针对网络进行安全加固和优化,新的网络模式可以为用户的资源提供更好的隔离性,提升云上资源的安全。为保障您的网络安全,建议您后续使用新网络创建Standard资源池。 表1 上线局点 上线局点 上线时间 华东二 2024年10月29日 20:00 父主题:
问题现象 原因分析 之前下载VS Code server失败,有残留信息,导致本次无法下载。 解决方法 方法一(本地):打开命令面板(Windows: Ctrl+Shift+P,macOS:Cmd+Shift+P),搜索“Kill VS Code Server on Host”,选