检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
$ID$VERSION_ID) \ && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \ && curl -s -L https://nvidia.github.io/nvidi
sh方式启动(历史版本)的启动方式,本章节新增了通过benchmark工具启动训练的方式。此方式训练完成后json日志或打屏日志直接打印性能结果,免于计算,方便用户验证发布模型的质量。并且新的训练方式将统一管理训练日志、训练结果和训练配置,使用yaml配置文件方便用户根据自己实际需求进行修改。 权重文件支
04系统),安装NVIDIA 470+CUDA 11.4后使用“nvidia-smi”和“nvcc - V”显示正确的安装信息,然后使用Pytorch下述命令验证cuda有效性: print(torch.cuda.is_available()) 显示报错: UserWarning: CUDA initialization:
kernel,并导致实例崩溃 如何解决训练过程中出现的cudaCheckError错误? 如何处理使用opencv.imshow造成的内核崩溃? 使用Windows下生成的文本文件时报错找不到路径? 创建Notebook文件后,右上角的Kernel状态为“No Kernel”如何处理? 父主题: 开发环境
本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。 目前仅支持SFT指令监督微调训练阶段。 代码目录
本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。 目前仅支持SFT指令监督微调训练阶段。 准备工作
图1 报错SSL certificate problem 可采取忽略SSL证书验证:使用以下命令来克隆仓库,它将忽略SSL证书验证。 git clone -c http.sslVerify=false https://github.com/Rudrabha/Wav2Lip.git
Code版本是否为1.78.2或更高版本,如果是,请查看Remote-SSH版本,如果低于v0.76.1,请升级Remote-SSH。 打开命令面板(Windows: Ctrl+Shift+P,macOS:Cmd+Shift+P),搜索“Kill VS Code Server on Host”,选
本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。 目前仅支持SFT指令监督微调训练阶段。 代码目录
-reserve.exe.deleteme ”。 原因分析 用户使用权限问题导致。 处理方法 用户电脑切换到管理员角色,键盘快捷键(Windows+R模式)并输入cmd,进入黑色窗口,执行如下命令: python -m pip install --upgrade pip 父主题:
下载地址: https://code.visualstudio.com/updates/v1_85 图1 VS Code的下载位置 VS Code版本要求: 建议用户使用VS Code 1.85.2版本或者最新版本进行远程连接。 VS Code安装指导如下: 图2 Windows系统下VS
service会优先读取网卡配置文件中的IP设置为主机IP, 此时无论DH Cient是否关闭,服务器都可以获取分配IP。 当服务器没有网卡配置文件时,DH Client开启,此时服务器会分配私有IP。如果关闭DH Client,则服务器无法获取私有IP。 图2 查看NetworkManager配置
执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x
执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x
执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x
Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benchmark工具用于精度验证,主要工作原理是:固定模型的输入,通过benchmark工具进行推理,并将推理得到的输出与标杆数据进行相似度度量(余弦相似度和平均相对误差
本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤三:上传代码包和权重文件中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。 cd benchmark_tools
Gallery,在报名实践活动或发布AI说时,将跳转至“欢迎入驻AI Gallery”页面。 在“欢迎入驻AI Gallery”页面,填写“昵称”和“邮箱”,并根据提示获取验证码。阅读并同意《华为云AI Gallery数字内容发布协议》和《华为云AI Gallery服务协议》后,单击“确定”完成入驻。 图1 入驻AI
迁移效果校验 在pipeline适配完成后,需要验证适配后的效果是否满足要求,通过对比原始onnx pipeline的最终输出结果确认迁移效果。如果精度和性能都没有问题,则代表迁移完成。 对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite
日志提示“root: XXX valid number is 0” 问题现象 日志提示“root: XXX valid number is 0”,表示训练集/验证集/测试集的有效样本量为0,例如: INFO: root: Train valid number is 0. INFO: root: Eval