检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts的Notebook中安装远端插件时不稳定要怎么办? 方法一:离线包安装方式(推荐) 到VS Code插件官网vscode_marketplace搜索待安装的Python插件,Python插件路径。 单击进入Python插件的Version History页签后,下载该插件的离线安装包,如图所示。
h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。 父主题: Standard推理部署
参考线下容器镜像构建及调试章节,构建容器镜像并调试,镜像构建及调试与单机单卡相同。 上传镜像,参考单机单卡训练的上传镜像章节操作。 操作步骤 登录Imagenet数据集下载官网地址,下载Imagenet21k数据集:http://image-net.org/ 下载格式转换后的annotation文件:ILSVRC
地训练调试模型。MindInsight当前支持基于MindSpore引擎的训练作业。MindInsight相关概念请参考MindSpore官网。 MindSpore支持将数据信息保存到Summary日志文件中,并通过可视化界面MindInsight进行展示。 前提条件 使用Min
install diffusers==0.28.0 accelerate==0.30.1 timm==0.9.16 准备数据集。 下载Kaggle官网提供的imagenet-mini数据集,解压之后文件大小4.1GB。该数据集是从[imagenet-2012]数据集中筛选的少量数据集。 准备预训练权重。
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上 各GPU上的模型进行前向传播,得到输出
18:00:00 ~ 2023/07/10 18:09:06 官网价 官网价=使用量*单价 本例中,在第一个计费周期内ModelArts专属资源池的使用量为772秒,单价可在ModelArts价格详情中查询,以3.5元/小时为例,那么官网价=(772 ÷ 3600) 小时 * 3.5元/小时
ow在运行过程中的计算图、各种指标随着时间的变化趋势以及训练中使用到的数据信息。TensorBoard相关概念请参考TensorBoard官网。 TensorBoard可视化训练作业,当前仅支持基于TensorFlow、PyTorch版本镜像,CPU/GPU规格的资源类型。请根据实际局点支持的镜像和资源规格选择使用。
配PyTorch和MindSpore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 精度预检工具旨在计算单个API在整网计算中和标杆场景下的差异,对于无明确精度差异来源情况或者对模型了解不多的情形下都推荐使用预检工具,检查第一个步骤或Loss明显出现问题的步骤
境变量调整日志等级,打印更多调试日志。 关于如何对MindSpore Lite遇到的问题进行定位与解决,请参见MindSpore Lite官网提供的问题定位指南。 父主题: 常见问题
下的python) python -c "import torch;print(torch.__version__)" 通过pytorch官网可查兼容版本:https://pytorch.org/get-started/previous-versions/ 如果环境中装了多版本的
在单卡环境下,执行一个Epoch训练任务,GPU和NPU训练叠加效果如下: 上图中的红色曲线为GPU Loss折线图,蓝色曲线为NPU训练Loss折线图。在整网训练单个Epoch情况下,Loss总体的绝对偏差大约为0.08181。 父主题: 精度对齐
${pod_scheduler_name} 若重启后,还是会Pending,建议多重复重启几次。 其他实例调度失败问题 首先通过打印Pod日志信息。根据错误信息,可通过访问官网链接:工作负载异常:实例调度失败,进行查找。 如何删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建
${pod_scheduler_name} 若重启后,还是会Pending,建议多重复重启几次。 其他实例调度失败问题 首先通过打印Pod日志信息。根据错误信息,可通过访问官网链接:工作负载异常:实例调度失败,进行查找。 如何删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建
${pod_scheduler_name} 若重启后,还是会Pending,建议多重复重启几次。 其他实例调度失败问题 首先通过打印Pod日志信息。根据错误信息,可通过访问官网链接:工作负载异常:实例调度失败,进行查找。 如何删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建
${pod_scheduler_name} 若重启后,还是会Pending,建议多重复重启几次。 其他实例调度失败问题 首先通过打印Pod日志信息。根据错误信息,可通过访问官网链接:工作负载异常:实例调度失败,进行查找。 如何删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建
scheduler 若重启后,还是会Pending,建议多重复重启几次。 其他实例调度失败问题 首先通过打印Pod日志信息。根据错误信息,可通过访问官网链接:工作负载异常:实例调度失败,进行查找。 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3
scheduler 若重启后,还是会Pending,建议多重复重启几次。 其他实例调度失败问题 首先通过打印Pod日志信息。根据错误信息,可通过访问官网链接:工作负载异常:实例调度失败,进行查找。 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3
scheduler 如果重启后,还是会Pending,建议多重复重启几次。 其他实例调度失败问题 首先通过打印Pod日志信息。根据错误信息,可通过访问官网链接:工作负载异常:实例调度失败,进行查找。 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3
使用Msprobe工具分析偏差 观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具进行数据Dump分析。本实验可在train