检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
成AI建模和应用。 如果您想了解如何使用ModelArts Standard一键部署现有的模型,并在线使用模型进行预测,您可以参考使用ModelArts Standard一键完成商超商品识别模型部署。 ModelArts Standard同时提供了自动学习功能,帮助用户零代码构建
"Your Name" && \ 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
Standard自动学习 Standard Workflow Standard数据管理 Standard开发环境 Standard模型训练 Standard模型部署 Standard资源管理 Standard支持的AI框架 父主题: 功能介绍
数据标注 ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelArts将存储在OBS中的模型部署上线为在线服务。 Standard AI全流程开发 数据管理 数据集存储在OBS中。 数据集的标注信息存储在OBS中。
主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.907) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
规格限制 是否支持sudo提权? 是否支持apt-get? 是否支持Keras引擎? 是否支持caffe引擎? 是否支持本地安装MoXing? Notebook支持远程登录吗? 父主题: Standard Notebook
创建Workflow数据集导入节点 创建Workflow数据集版本发布节点 创建Workflow训练作业节点 创建Workflow模型注册节点 创建Workflow服务部署节点 父主题: 开发Workflow命令参考
--width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
"Your Name" && \ 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
--width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
计费项 自动学习/Workflow计费项 数据管理计费项 开发环境计费项 模型训练计费项 AI应用计费项 推理部署计费项 专属资源池计费项
使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发
FAQ CUDA和CUDNN run.sh脚本测试ModelArts训练整体流程 ModelArts环境挂载目录说明 infiniband驱动的安装 如何保证训练和调试时文件路径保持一致 父主题: 专属资源池训练
主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910) 推理场景介绍 准备工作 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 附录:工作负载Pod异常问题和解决方法
OBS提供了多种语言SDK供选择,开发者可根据使用习惯下载OBS SDK进行调用。使用OBS SDK前,需下载OBS SDK包,然后在本地开发环境中安装使用。 详细指导 :《OBS SDK参考》 MoXing MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于Ten
发布和管理AI Gallery中的AI应用 发布本地AI应用到AI Gallery 将AI Gallery中的模型部署为AI应用 管理AI Gallery中的AI应用 父主题: AI Gallery(新版)
主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.905) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发
主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。