检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
选择资源的续费时长,判断是否勾选“统一到期日”,将资源的到期时间统一到各个月的某一天(详细介绍请参见统一包年/包月资源的到期日)。确认配置费用后单击“去支付”。 进入支付页面,选择支付方式,确认付款,支付订单后即可完成续费。 统一包年/包月资源的到期日 如果您持有多台到期日不
用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 duration 否 Long 续订时长,推荐该参数在leaseReq中配置,若请求参数中包含duration,则忽略leaseReq的值,且实例自动停止类别为定时停止。(单位:毫秒)。 请求参数 表3 请求Body参数
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。
Notebook打开后黑屏,由于代理问题导致,切换代理。 打开Notebook显示空白 打开Notebook时显示空白,请清理浏览器缓存后尝试重新打开。 检查浏览器是否安装了过滤广告组件,如果是,请关闭该组件。 报错404 如果是IAM用户在创建实例时出现此错误,表示此IAM用户不具备对应存储位置(OBS桶)的操作权限。
明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b.sh和0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
数据标注 ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelArts将存储在OBS中的模型部署上线为在线服务。 AI全流程开发 数据管理 数据集存储在OBS中。 数据集的标注信息存储在OBS中。 支持从OBS中导入数据。
KooSearch企业搜索服务:基于在MaaS开源大模型部署的模型API,搭建企业专属方案、LLM驱动的语义搜索、多模态搜索增强。 盘古数字人大脑:基于在MaaS开源大模型部署的模型API,升级智能对话解决方案,含智能客服、数字人。 Dify:支持自部署的应用构建开源解决方案,用于Agent编排、自定义工作流。
面向熟悉代码编写和调测的AI工程师 ModelArts Standard推理部署 使用Standard一键完成商超商品识别模型部署 本案例以“商超商品识别”模型为例,介绍从AI Gallery订阅模型,一键部署到ModelArts Standard,并进行在线推理预测的体验过程。 面向AI开发零基础的用户
服务管理概述 服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingfac
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
Notebook打开后黑屏,由于代理问题导致,切换代理。 打开Notebook显示空白 打开Notebook时显示空白,请清理浏览器缓存后尝试重新打开。 检查浏览器是否安装了过滤广告组件,如果是,请关闭该组件。 报错404 如果是IAM用户在创建实例时出现此错误,表示此IAM用户不具备对应存储位置(OBS桶)的操作权限。
规格中带有ARM字样的显示,为ARM CPU架构。 规格中未带有ARM字样的显示,为X86 CPU架构。 ModelArts后台暂不支持下载开源安装包,建议用户在自定义镜像中安装训练所需的依赖包。 自定义镜像需上传至容器镜像服务(SWR)才能在ModelArts上用于训练。 父主题: 制作自定义镜像用于训练模型
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:Standard大模型推理常见问题
inv_freq = self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
Cluster节点池:为帮助您更好地管理Kubernetes集群内的节点,ModelArts支持通过节点池来管理节点。节点池是集群中具有相同配置的一组节点,一个节点池包含一个节点或多个节点,您可以创建、更新和删除节点池。 管理Lite Cluster节点:节点是容器集群组成的基本元
inv_freq = self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)