检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何查看RES正在收费的作业? 在RES管理控制台,单击左侧菜单栏的“总览”,您可以在“总览”区域查看智能场景和自定义场景中处于“运行中”状态的作业。再根据实际情况进入对应管理页面,“终止”或“删除”对应场景停止收费。 父主题: 计费相关
特征名称:值为时间戳(10位)的特征的名称,任务会根据此特征对候选集进行排序。 推荐天数:推荐数据的时间段,该时间段从当前开始往前推N天,默认15天。 默认热度排序。 候选集最大长度 生成候选集的最大长度,每次计算更新的候选集中的个数不会超过最大值。 默认50。 候选集的召回策略 召回候选集的策略。
实时日志 RES根据实时发送到DIS上的日志,进行数据计算和处理,更新用户的相关数据。用户发送到DIS上的数据具体如下: 实时行为日志 实时行为日志的作用包括: 更新用户的兴趣标签。 记录所选行为类型的历史记录。 更新用户的上下文信息。 召回候选集。 表1 实时行为日志字段描述 字段名
RES的离线数据源包括什么? 离线数据包括如下几张表: 用户属性表 物品属性表 用户操作行为表 每张表的字段描述和规范详情请参见《推荐系统用户指南》中准备离线数据源章节。 父主题: 数据源
关联推荐的主要应用场景是什么? 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。 父主题: 智能场景
热门推荐的主要应用场景是什么? 热门推荐只要适用于首页、热点类场景,满足流行度统计,有效吸引新用户。 父主题: 智能场景
猜你喜欢的主要应用场景是什么? 猜你喜欢主要应用于浏览意向不明确,如首页推荐等,RES能够根据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 父主题: 智能场景
通过如下方式对场景进行发布或终止。 在自定义场景列表页面终止:自定义场景列表中的目标场景,单击“操作”列的“终止”。 在自定义场景详情页面发布或终止:单击自定义场景列表中的目标场景名称,进入自定义场景详情页,单击页面右上角的“终止”。 在“终止场景”页面确认自定义场景信息后单击“是”。 终止之后该场景数据不可用。
新执行”、“删除”等操作。您也可以通过查看服务的详细信息判读作业训练状态和查询训练结果。 复制离线作业 用户可以通过复制组合作业再次创建新的作业进行离线计算。生成的数据和原来的作业生成的数据相互独立,复制的离线作业会生成新的线上指定的UUID。 操作步骤如下: 登录RES管理控制
单击目标服务名称前方的查看预测接口,通过单击预测接口右侧的,复制接口地址,调用服务。 图2 获取预测接口 通过在线服务详情页面获取接口 登录RES管理控制台,在左侧菜单栏中选择“在线服务”,进入服务列表页面。 单击目标服务名称进入服务详情页面,通过单击预测接口右侧的,复制接口地址,调用服务。
用户需要自己手工创建整理这些表并存储到OBS上。 每张表的表结构必须符合推荐系统的要求,列名和字段类型需要和规范中保持一致(参考下面的表结构说明)。 每张表中填充的数据,必须符合推荐引擎的要求。 对于业务数据中无法提供的字段可以填NULL。 用户属性表 用户属性表记录用户的属性信息,例如地域、爱好等,属性名和属性值成对出现。
在线服务获得推荐的调用次数如何计算? RES从全局角度计算在线服务获得推荐的调用次数,不区分每次调用的用户。例如A用户调用请求推荐接口是每秒5次,B用户调用请求推荐接口每秒5次,当A用户和B用户同时调用此接口时,总的获得推荐的调用请求为A用户和B用户之和,即5+5=10。 父主题:
展程序(也可使用其它支持发送post请求的软件)。 打开Postman,如图4所示。 图4 Postman界面 在Postman界面填写参数。 选择POST任务,将通过获取预测接口获取的调用地址复制到POST后面的方框。Headers页签的“KEY”值填写为“X-Auth-Tok
API查询列表的接口返回结果是否支持分页? API查询列表的接口不支持分页。 父主题: 基础问题
在OBS上。 白名单地址 白名单所在的路径。白名单之外的物品不应该出现在最终推荐结果集里。白名单内容需要存储在OBS上。 历史行为过滤 单击增加历史行为过滤,单击后方的删除过滤行为。指定与用户个性化的物品候选集过滤准则。例如对于用户过去3天内有过view行为的物品(如新闻)过滤,使之不进入候选集。
数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度
数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度
String 物品的类型。 是 itemId String 对应行为发生的对象的值。如果是和物品发生关系,则是物品的id(itemId)的值。 是 actionType String 行为类型,包括正向行为和负向行为。下面为预置的行为类型和对应的权重,权重有默认分数,默认分数代表该行为
数据探索是什么?近线实时数据如何在数据探索中的报告体现? 数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全度等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于近线实时数据会实时入库
行为数据的时间范围。 测试数据时间:测试数据起始时间和终止时间,该起始时间和终止时间不得超过行为数据的时间范围。 “RATE” 训练数据占比:生成的结果中,训练集占整个训练集和测试集的比例,默认0.7。 测试数据占比:生成的结果中,训练集占整个训练集和测试集的比例,默认0.3。 结果保存路径