检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
丰富的教程,帮助用户快速适配分布式训练,使用分布式训练极大减少训练时间。 分布式训练调测的能力,可在PyCharm/VSCode/JupyterLab等开发工具中调试分布式训练。 约束限制 总览页面打开的CodeLab不支持此项功能,但是如果用户在AI Hub中打开了可用的案例,会自动跳转到CodeLab中,此时是可以使用这项功能的。
Server资源 场景描述 本文主要介绍如何配置DCGM监控。DCGM是用于管理和监控基于Linux系统的NVIDIA GPU大规模集群的一体化工具,提供多种能力,包括主动健康监控、诊断、系统验证、策略、电源和时钟管理、配置管理和审计等。 前提条件 裸金属服务器需要安装driver、c
使用Prometheus查看Lite Cluster监控指标 背景信息 Prometheus是一款开源监控工具,ModelArts支持Exporter功能,方便用户使用Prometheus等第三方监控系统获取ModelArts采集到的指标数据。 使用说明 该功能为白名单功能,如需要使用,请联系提交工单开通此功能。
MaaS使用场景和使用流程 ModelArts Studio大模型即服务平台(后续简称为MaaS服务),提供了简单易用的模型开发工具链,支持大模型定制开发,让模型应用与业务系统无缝衔接,降低企业AI落地的成本与难度。 当您第一次使用MaaS服务时,可以参考快速入门使用ModelArts
autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在
本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16 per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
使用ModelArts VS Code插件调试训练ResNet50图像分类模型 应用场景 Notebook等线上开发工具工程化开发体验不如IDE,但是本地开发服务器等资源有限,运行和调试环境大多使用团队公共搭建的CPU或GPU服务器,并且是多人共用,这带来一定的环境搭建和维护成本
知识。ModelArts Studio大模型即服务平台(后续简称为MaaS服务)作为一个面向客户的大模型服务化平台,提供简单易用的模型开发工具链,支持大模型定制开发,让模型应用与业务系统无缝衔接,显著降低了企业AI落地的成本与难度。 业界主流开源大模型覆盖全 MaaS集成了业界主
自定义镜像规范 AI Gallery支持托管自定义镜像,但是托管的自定义镜像要满足规范才支持使用AI Gallery工具链服务(微调大师、在线推理服务)。 自定义镜像的使用流程 托管自定义镜像,操作步骤请参考托管模型到AI Gallery。 如果自定义镜像要支持训练,则需要满足自定义镜像规范(训练)。
接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:
接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:
有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:
“预测”既可看到预测结果。 图5 预测-openai 在线服务的更多内容介绍请参见文档查看服务详情。 Step5 推理性能测试 推理性能测试操作请参见推理性能测试。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
“预测”既可看到预测结果。 图5 预测-openai 在线服务的更多内容介绍请参见文档查看服务详情。 Step5 推理性能测试 推理性能测试操作请参见推理性能测试。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
成本管理 成本构成 ModelArts提供AI工具链、AI算力,成本由AI算力的资源成本和运维成本构成。 成本分配 ModelArts支持企业项目管理,可以由企业项目服务来管理同一账号下不同项目的成本。 成本分析 通过华为云费用账单来分析账号下的成本支出情况。 成本优化 长期使用
Standard Workflow Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能
TCP协议的22端口。 ping命令是一种基于ICMP协议(Internet Control Message Protocol)的网络诊断工具,利用ICMP协议向目标主机发送数据包并接收返回的数据包来判断网络连接质量。当安全组的入方向规则中没有包含ICMP协议,就会出现ping不通的问题。
类型的模型,还支持托管其他任务类型的模型,其他任务类型的模型被称为自定义模型。但是托管的自定义模型要满足规范才支持使用AI Gallery工具链服务(微调大师、在线推理服务)。 自定义模型的使用流程 托管模型到AI Gallery。 模型基础设置里的“任务类型”选择除“文本问答”和“文本生成”之外的类型。
模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 执行如下命令进入容器,并进入AutoAWQ目录下,
有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: