检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用于对AI助手进行任务规划、工具选择和生成回复。 模型版本 选择与“嵌入模型”对应的版本。例如,嵌入模型为N2系列,则模型版本也为N2。 工具配置 网页搜索 开启网页搜索后,可以通过调用web搜索来解决模型对于事实类问题回答不好的现象。 添加一个工具 用于拓展AI助手功能,使其能够与外部系统进行交互。可以直接创建
指标。支持的模型指标请参见下表。 表1 规则打分指标 指标名称 说明 BLEU-1 模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2 模型生成句子与实际句子在中词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4 模型生成结果和实际句子
安全 责任共担 身份认证与访问控制 数据保护技术 审计 监控安全风险
或知识库目进行填写。设置完成后单击“立即创建”进入知识库详情页,上传文档。在详情页会同步展示与AI助手的绑定关系。 图2 上传数据至知识库 当选择“引用知识库”时,需要设置名称、英文名称与描述信息,并选择需要引用的KooSearch知识库。注意英文名称和描述将影响模型检索效果,不
准备盘古大模型训练数据集 训练数据集创建流程 模型训练所需数据量与数据格式要求 创建一个新的数据集 检测数据集质量 清洗数据集(可选) 发布数据集 创建一个训练数据集
从而通过身份认证。 AK(Access Key ID):访问密钥ID。与私有访问密钥关联的唯一标识符;访问密钥ID和私有访问密钥一起使用,对请求进行加密签名。 SK(Secret Access Key):与访问密钥ID结合使用的密钥,对请求进行加密签名,可标识发送方,并防止请求被修改。
当前,大模型对于私域数据的利用仍然面临一些挑战。私域数据是由特定企业或个人所拥有的数据,通常包含了领域特定的知识。将大模型与私域知识进行结合,将发挥巨大价值。私域知识从数据形态上又可以分为非结构化与结构化数据。对于非结构化数据,如文档,可以利用大模型+外挂检索库(如Elastic Search)的方
多样化的数据则帮助模型更好地应对各种情况。因此,数据的收集和处理是大模型训练中的关键环节。 盘古大模型套件平台通过提供数据获取、清洗、配比与管理等功能,确保构建高质量的训练数据。 父主题: 准备盘古大模型训练数据集
Ascend”,并选择加速卡类型。 如果节点没有加速卡,则选择“AI加速卡 > 不使用”。 单击“立即下载”,下载设备证书和Agent固件,并将设备证书与Agent固件分别重命名为license.tgz、hilens-agent.tgz。 父主题: 部署为边缘服务
评估完成后,进入“评估报告”页面,可以查看每条数据的评估结果。 在评估结果中,“预期结果”即为变量值(问题)所预设的期望回答,“生成结果”即模型回复的结果。通过比较“预期结果”与“生成结果”的差异可以判断提示词效果。 图3 查看评估报告 父主题: 批量评估提示词效果
cache.update("缓存是否存在?", LLMResp(answer="存在。")) # 校验,一致 # 用于检查缓存中的数据是否与查询的数据是否一致,如果一致,就返回缓存中的结果对象 # 例如,查询“缓存是否存在?”这个问题和“test-semantic-cache-v
update("缓存是否存在?",LLMResp.builder().answer("存在。").build()); //校验,一致 //用于检查缓存中的数据是否与查询的数据是否一致,如果一致,就返回缓存中的结果对象 //例如,查询“缓存是否存在?”这个问题和“test-semantic-cache-v
对话问答(多轮对话)(/chat/completions) Java、Python、Go、.NET、NodeJs 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 通用文本(文本补全)(/text/completions) Java、Python、Go、.NET、NodeJs
盘古大模型具备强大的学习能力,能够通过少量行业数据快速适应特定业务场景的需求。模型在微调后能够迅速掌握并理解特定行业的专业知识和术语,从而深刻把握行业特性。这种快速学习与适应能力,为各行业企业和机构带来了极大的便利。它们可以根据具体需求,利用盘古大模型构建或优化业务流程,提高工作效率,降低运营成本,并为客户提供更精准、个性化的服务。
返回对应的答案内容,具体参数信息见表1。 图1 体验预置模型功能 表1 能力调测参数信息表 参数名称 描述 温度 控制语言模型输出的随机性与创造性。温度设置越低,输出更可预测;温度设置越高,输出种类更多,更不可预测。 核采样 控制生成文本多样性和质量。 最大口令限制 用于控制聊天
返回对应的答案内容,具体参数信息见表1。 图1 体验预置模型功能 表1 能力调测参数信息表 参数名称 描述 温度 控制语言模型输出的随机性与创造性。温度设置越低,输出更可预测;温度设置越高,输出种类更多,更不可预测。 核采样 控制生成文本多样性和质量。 最大口令限制 用于控制聊天
文本补全:给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。例如,让模型依据要求写邮件、做摘要总结、生成观点见解等。 多轮对话:基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 图1 使用能力调测 表1 能力调测参数说明 参数 说明 温度 用于控制生成文本的多样性和创造力。 核采样 控制生成文本多样性和质量。
”、“账号名”以及待使用区域的“项目ID”。调用服务时会用到这些信息,请提前保存。 由于盘古大模型当前部署在“西南-贵阳一”区域,需要获取与“西南-贵阳一”区域对应的project id。 图3 获取user name、domain name、project id
在“数据工程 > 数据管理”中创建“评测”类型的数据集作为评估数据集,数据集创建完成后需要执行发布操作。 数据量建议3-1000条。当前数据集数据保存与上传的文件类型有以下两种,大小均不可超过1024MB。 文件类型为JSONL:每一行表示一段文本,形式为{"context":"context内容"
码开启相应日志打印信息: import logging # 打印在命令行(与打印在文件不同时生效) logging.basicConfig(level=logging.DEBUG) # 打印在日志文件(与打印在命令行不同时生效) logging.basicConfig(level=logging