检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,质量较差的测试集无法反映模型的真实结果。 数据质量:
一份高质量的数据应具备以下几类特征: 数据与目标任务一致:微调数据应该与微调任务的目标和分布保持一致,反映出任务的实际要求。比如,现在需要微调一个情感分类的模型,模型只需要回复“消极”或者“积极”: 情感分类场景-典型低质量数据:数据中存在与目标任务不一致的样本。 {"context":
添加Agent流式输出(Java SDK) Agent用于工具调用场景,与普通的LLM流式输出相比,提供了事件流的封装。消息内容、工具调用等通过不同的事件类型区分。 通过如下接口为Agent添加流式输出的回调: /** * 设置流式接口回调函数 * * @param streamAgentCallback
多轮对话 功能介绍 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 URI POST /v1/{project_id}/deployments/{deployment_id}/chat/completions 表1 路径参数 参数 是否必选 参数类型 描述 project_id
name、project id。 project id参数需要与盘古服务部署区域一致。例如,盘古大模型部署在“西南-贵阳一”区域,需要获取与“西南-贵阳一”区域对应的project id。 图1 查看盘古服务区域 图2 获取user name、domain name、project
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 华为云盘古大模型,以下功能支持API调用。 表1 API清单 API 功能 NLP-文本补全 给定一个
cluster_install-ascend.sh generate_docker_cert --pkg-path=/home/hilens/pkgs 基于边缘部署准备工作与注册边缘资源池节点,按照以下目录结构存放下载文件,注意修改下载文件的命名。其中,docker下的certs证书会自动生成,一般无需修改。 pkgs
和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具,再交给Agent去处理。 定义一个Tool Retriever: from pangukitsappdev.tool.in
在左侧导航栏中选择“模型开发 > 模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,选择模型类型、训练类型、训练方式、训练模型与训练参数。 其中,训练配置选择LLM(大语言模型),训练类型选择有监督训练,根据所选模型配置训练参数。 表1 有监督微调参数说明 参数名称 说明
和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具,再交给Agent去处理,示例如下: 定义一个Tool Retriever: final List<Tool> toolList
发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息,比如“以上是金融领域的新闻”、“以上是一篇xx领域的xxx文档”。
为什么微调后的模型,回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
为什么微调后的模型,回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大
检测数据集质量 数据集创建成功后,平台将对数据集中的数据进行质量校验,并给出健康度评分、合规度评分与数据长度分布。 检测数据集质量 在“数据工程 > 数据管理”页面,选择“我的数据集”或者“训练数据集”页签。 单击数据集名称,进入数据集详情页,查看详细的数据质量。 其中,数据长度
部署边缘模型 进入盘古大模型套件平台,进入“模型开发 > 模型部署 > 边缘部署”,单击右上角“部署”按钮。 在创建部署页面选择模型与部署资产,选择部署方式为边缘部署,输入推理实例数(根据边缘资源池的实际资源选择),输入服务名称,单击“立即创建”。 创建成功后,可在“模型部署 >
申请体验盘古大模型服务 盘古大模型为用户提供了五大模型的体验,包括NLP大模型、CV大模型、多模态大模型、预测大模型与科学计算大模型,用户可根据所需提交体验申请,申请通过后才可以体验盘古大模型功能。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。
申请体验盘古大模型服务 盘古大模型为用户提供了五大模型的体验,包括NLP大模型、CV大模型、多模态大模型、预测大模型与科学计算大模型,用户可根据所需提交体验申请,申请通过后才可以体验盘古大模型功能。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。
开通盘古大模型服务 盘古大模型具备文本补全和多轮对话能力,用户在完成盘古大模型套件的订购操作后,需要开通大模型服务,才可以调用模型,实现与模型对话问答。 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。
终端节点 终端节点(endpoint)即API服务的终端地址,通过该地址与API进行通信和交互。获取步骤如下: 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 图1 服务管理 图2 申请开通服务 在“概览
部署为在线服务 模型训练完成后,即模型处于“已完成”状态时,可以启动模型的部署操作。 基于盘古大模型打造的专业大模型包括BI专业大模型与单场景大模型支持模型推理,但不支持模型训练。 部署为在线服务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“部署”。