检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
EVAL:指明该对象用于评估。 TEST:指明该对象用于测试。 INFERENCE:指明该对象用于推理。 如果没有给出该字段,则使用者自行决定如何使用该对象。 id 否 此参数为系统导出的样本id,导入时可以不用填写。 annotation 否 如果不设置,则表示未标注对象。anno
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数及其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
work_path=work_path) 示例五:根据标注类型创建文本三元组数据集 dataset_name = "dataset-text-triplet" dataset_type = 102 # 数据集标注类型,102表示文本三元组标注类型 data_sources = dict()
8b8d018a", "step_name" : "condition_step", "step_title" : "skip training", "status" : "wait_inputs" }, { "time" : "2022-10-20T15:01:42
import RandomResizedCrop, Compose, Normalize, ToTensor, RandomHorizontalFlip import numpy as np from transformers import AutoModelForImageClassification
团队标注任务当前验收任务详情。 create_time Long 标注任务创建时间。 dataset_id String 数据集ID。 description String 标注任务描述信息。 label_stats Array of LabelStats objects 标注任务标签统计信息。
等操作,可通过Notebook环境进行,并且Notebook环境具有一定的存储空间,可与OBS中的数据相互传递。 训练 预训练/微调 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于Standard+OBS适配ModelLink
模型文件大小超过5GB,需要配置“动态加载”。 “运行时依赖” 罗列选中模型对环境的依赖。例如依赖“tensorflow”,安装方式为“pip”,其版本必须为1.8.0及以上版本。 “模型说明” 为了帮助其他模型开发者更好的理解及使用您的模型,建议您提供模型的说明文档。单击“添加
Integer 已删除的样本数量。 deletion_stats Map<String,Integer> 删除原因统计信息。 description String 版本描述信息。 export_images Boolean 发布时是否导出图片到版本输出目录。可选值如下: true:导出图片到版本输出目录
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数及其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
练状态即可。用户需要在代码里加上reload ckpt的代码,使能读取前一次训练保存的预训练模型。 ModelArts Standard中如何实现断点续训练 在ModelArts Standard训练中实现断点续训练或增量训练,建议使用“训练输出”功能。 在创建训练作业时,设置训
数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。 常见问题 使用从OBS选择的数据创建表格数据集如何处理Schema信息? Schema信息表示表格的列名和对应类型,需要跟导入数据的列数保持一致。 如果您的原始表格中已包含表头,需要开启“
否 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 iphertext_enabled 否 Boolean 是否明文展示appsecret。 app_ids 否 Array of strings
“标签名”或从下拉列表中选择已添加的标签。单击“确定”,完成选中图片的标注操作。例如,您可以选择多张图片,按照花朵种类将图片标注为“tulips”。同样选择其他未标注分类图片,将其标注为“sunflowers”、“roses”等。标注完成后,图片将存储至“已标注”页签下。 图片标
LoRA、QLoRA,本文档主要支持全参数(Full)和LoRA。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 全参训练(Full):这种策略主要对整个模型进行微调。这
准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 预训练/微调 介绍如何进行训练,包括训练数据处理、超参配置、训练任务、性能查看。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch
机视觉和推荐系统等。它使得AI系统能够更加灵活和适应性强,更好地应对现实世界中不断变化的数据环境。 ModelArts Standard中如何实现增量训练 增量训练是通过Checkpoint机制实现。 Checkpoint的机制是:在模型训练的过程中,不断地保存训练结果(包括但不
可以使用html中给出的代码段替换torch_npu中syncbatchnorm.py文件的forward方法(可以在训练环境中执行`pip show torch_npu`查看torch_npu的安装路径)。这类优化通常可以较显著地提升训练速度。 图18 SyncBatchNorm分析
如果在使用Notebook时,需要访问其他账号的OBS桶,请查看您的账号是否有该OBS桶的访问权限。如没有权限,请参见在Notebook中,如何访问其他账号的OBS桶?。 检查委托授权 请前往权限管理,查看是否具有OBS访问授权。如果没有,请参考配置访问授权(全局配置)。 检查OBS桶是否为非加密桶
删除实例,避免产生不必要的费用 。 如果您购买了套餐包,可优先选择您对应规格的套餐包,在“配置费用”页签会显示您的套餐余量,以及超出的部分如何计费,请您关注,避免造成不必要的资源浪费。 节点配置 数据标注参数配置 labeling_input:选择预先创建的数据集即可,版本可以不用选择。