检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
nInsight-flume-1.9.0/conf/”(要求已安装Flume客户端),其中10.196.26.1为客户端所在节点业务平面的IP地址。 scp ${BIGDATA_HOME}/FusionInsight_Porter_8.1.0.1/install/FusionInsight-Flume-1
表2 参数说明 参数名称 说明 是否必须配置 topic 表示kafka主题名。 是 bootstrap.server 表示broker集群ip/port列表。 是 security.protocol 运行参数可以配置为PLAINTEXT(可不配置)/SASL_PLAINTEXT/
node-cache-short-circuit.enable”的不同配置控制是否允许访问ECS元数据接口,从而控制是否允许触发ECS流控。 MRS集群支持通过委托获取临时AKSK访问OBS。临时AKSK通过ECS元数据接口获取。ECS元数据接口有单机器5分钟140次的流控阈值,触发流控后机器被加入黑名
文件必须以原子方式放置在给定的目录中,这在大多数文件系统中可以通过文件移动操作实现。 Socket Source host:连接的节点ip,必填 port:连接的端口,必填 不支持 - Rate Source rowsPerSecond:每秒产生的行数,默认值1 rampUp
Yarn常用配置参数 队列资源分配 Yarn服务提供队列给用户使用,用户分配对应的系统资源给各队列使用。完成配置后,您可以单击“刷新队列”按钮或者重启Yarn服务使配置生效。 参数入口: MRS 3.x之前的版本集群执行以下操作: 用户在MRS控制台上,选择“租户管理 > 资源分布策略”。
建表”和“查询”权限,表和列包含“查询”、“插入”、“UPDATE”和“删除”权限。HetuEngine中还包含拥有者权限“OWNERSHIP”和集群管理员权限“ADMIN”。 数据文件权限,即HDFS文件权限 HetuEngine的数据库、表对应的文件保存在HDFS中。默认创建
如果对RocksDB有频繁的读取请求,那么磁盘IO会成为Flink任务瓶颈。当一个 TaskManager包含三个slot时,那么单个服务器上的三个并行度都对磁盘造成频繁读写,从而导致三个并行度的之间相互争抢同一个磁盘IO,导致三个并行度的吞吐量都会下降。可以通过指定多个不同的硬盘从而减少IO竞争。
文件必须以原子方式放置在给定的目录中,这在大多数文件系统中可以通过文件移动操作实现。 Socket Source host:连接的节点ip,必填 port:连接的端口,必填 不支持 - Rate Source rowsPerSecond:每秒产生的行数,默认值1 rampUp
文件必须以原子方式放置在给定的目录中,这在大多数文件系统中可以通过文件移动操作实现。 Socket Source host:连接的节点ip,必填 port:连接的端口,必填 不支持 - Rate Source rowsPerSecond:每秒产生的行数,默认值1 rampUp
文件必须以原子方式放置在给定的目录中,这在大多数文件系统中可以通过文件移动操作实现。 Socket Source host:连接的节点ip,必填 port:连接的端口,必填 不支持 - Rate Source rowsPerSecond:每秒产生的行数,默认值1 rampUp
setProperty("java.security.krb5.conf", KRB); LoginUtil.login(PRINCIPAL, KEYTAB, KRB, conf); } // 初始化Job任务对象。 Job job = Job.getInstance(conf
含“创建”和“查询”权限,表和列包含“查询”、“插入”、“UPDATE”和“删除”权限。SparkSQL中还包含拥有者权限“OWNERSHIP”和Spark管理员权限“管理”。 数据文件权限,即HDFS文件权限 SparkSQL的数据库、表对应的文件保存在HDFS中。默认创建的数
据的应用开发示例,实现数据分析、处理,并输出满足用户需要的数据信息。 另外以MapReduce访问HDFS、HBase、Hive为例,介绍如何编写MapReduce作业访问多个服务组件。帮助用户理解认证、配置加载等关键使用方式。 Presto presto-examples 该样
Streaming 状态操作 Scala SparkOnHudiJavaExample 使用Spark执行Hudi基本操作 Java SparkOnHudiPythonExample 使用Spark执行Hudi基本操作 Python SparkOnHudiScalaExample 使用Spark执行Hudi基本操作
含“创建”和“查询”权限,表和列包含“查询”、“插入”、“UPDATE”和“删除”权限。SparkSQL中还包含拥有者权限“OWNERSHIP”和Spark管理员权限“管理”。 数据文件权限,即HDFS文件权限 SparkSQL的数据库、表对应的文件保存在HDFS中。默认创建的数
SparkRExample 安装SparkR R SparkOnHudiJavaExample 使用Spark执行Hudi基本操作 Java SparkOnHudiPythonExample 使用Spark执行Hudi基本操作 Python SparkOnHudiScalaExample 使用Spark执行Hudi基本操作
要求Compaction执行合并的过程必须和实时任务解耦,通过周期调度Spark任务来完成异步Compaction,这个方案的关键之处在于如何合理的设置这个周期,周期如果太短意味着Spark任务可能会空跑,周期如果太长可能会积压太多的Compaction Plan没有去执行而导致
值。 0.1 hoodie.parquet.compression.codec parquet压缩编解码方式名称,默认值为gzip。可能的选项是[gzip | snappy | uncompressed | lzo] snappy hoodie.logfile.max.size
容量均衡的两个主要的使用原则,如表2所示。 表2 使用原则 编号 使用原则 说明 1 所有的数据节点在locators中出现的频率一样。 如何保证频率一样:假如数据节点有N个,则创建locators的数量应为N的整数倍(N个、2N个……)。 2 对于所有locators的使用需要
容量均衡的两个主要的使用原则,如表2所示。 表2 使用原则 编号 使用原则 说明 1 所有的数据节点在locators中出现的频率一样。 如何保证频率一样:假如数据节点有N个,则创建locators的数量应为N的整数倍(N个、2N个……)。 2 对于所有locators的使用需要