检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看模型的部署详情、部署事件、部署日志等信息。 图1 部署详情
实现安全、高可靠和低成本的存储需求。因此,为了能够顺利进行存储数据、训练模型等操作,需要用户配置访问OBS服务的权限。 登录ModelArts Studio大模型开发平台首页。 配置OBS访问授权。 方式1:在首页顶部单击“此处”,在“获取依赖服务的授权”弹窗选中授权,并单击“确认授权”。
停止计费 包周期服务到期后,保留期时长将根据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 按需计费模式下,若账户欠费,保留期时长同样依据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 如果保留期结束后仍未续订或充值,数据将被删除且无法恢复。
示例如下: 去除“参考文献”以及之后的内容:\n参考文献[\s\S]* 针对pdf的内容,去除“0 引言”之前的内容,引言之前的内容与知识无关:[\s\S]{0,10000}0 引言 针对pdf的内容,去除“1.1Java简介”之前的与知识无关的内容:[\s\S]{0,10000}
视频鉴黄评分 对视频的涉黄程度进行评分,分数越高越危险。评分范围(0, 100),评分≥50分的视频可视为涉黄视频。 视频暴恐评分 对视频的暴恐程度进行评分,分数越高越危险。评分范围(0, 100),评分≥50分的视频可视为暴恐视频。 视频涉政评分 对视频的涉政程度进行评分,分数越高越危险。评分范围(0
部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看模型的部署详情、部署事件、部署日志等信息。 图1 部署详情
访问密钥”页面,依据界面操作指引获取Access Key(AK)和Secret Access Key(SK)。下载的访问密钥为credentials.csv文件,包含AK/SK信息。 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。 使用推
DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时候,PATCH可能会去创建一个新的资源。 在接口的URI部分,请求方法为“POST”,例如: POST https://{endpoint}/v1/{p
10TB。 问答排序 jsonl、csv jsonl格式:context表示问题,targets的回答1、回答2、回答3表示答案的优劣顺序,最好的答案排在最前面。targets内容的数量至少为2个,且最多为6个,具体格式示例如下: { "context":"context内容","targets":["回答1"
在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古科学计算大模型支持的具体操作: 表2 盘古科学计算大模型支持的操作 模型 预训练 微调 模型压缩
> 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。 图1 提示词工程 在提示词撰写区域,单击“设为候选”,将当前撰写的提示词设置为候选提示词。 候选状态的提示词将保存至左侧导航栏的“候选”中。 图2 设为候选 父主题: 横向比较提示词效果
说明 压缩配置 压缩模型 选择需要进行压缩的模型,可使用来自资产的模型或任务的模型。 压缩策略 例如,可使用INT8压缩策略,同等QPS目标下,INT8可以降低推理显存占用。 基本信息 任务名称 模型压缩任务的名称。 描述 模型压缩任务的描述。 参数填写完成后单击“立即创建”创建模型压缩任务。
在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古NLP大模型支持的具体操作: 表2 盘古NLP大模型支持的能力 模型 预训练 微调 模型压缩 在线推理
和大模型组件。 开始:工作流的入口组件,该组件的配置详见配置开始组件。 结束:输出工作流的执行结果,该组件的配置详见配置结束组件。 LLM:初始化完成的大模型节点,没有额外的Prompt配置,直接接受用户原始输入,并输出大模型执行后的原始输出,该组件的配置详见配置大模型组件。 用
> 标注管理”,单击页面右上角“创建标注任务”。 图2 标注管理 在“创建标注任务”页面选择需要标注的加工后的文本类数据集,并设置标注项。 设置标注项时,不同类型的数据文件对应的标注项也有所差异,可基于页面提示进行设置。 图3 创建标注任务 单击“下一步”设置标注人员及信息,单击“完成创建”。
应用提示词生成面试题目 应用场景说明:将面试者的简历信息输入给大模型,基于简历生成面试问题,用于辅助人工面试或实现自动化面试。 父主题: 提示词应用示例
对于使用AI进行预标注的视频Caption任务可设置以下两种方式的“标注要求”: 选择“全部标注”:要求标注人员需要对全部的数据进行人工标注后才可提交标注结果。 选择“可部分标注”:允许标注人员在确认AI预标注满足要求后,直接使用AI预标注功能完成数据集的标注并提交标注结果。 标
可以尝试修改参数并查看模型效果。以修改“核采样”参数为例,核采样控制生成文本的多样性和质量: 当“核采样”参数设置为1时,保持其他参数不变,单击“重新生成”,再单击“重新生成”,观察模型前后两次回复内容的多样性。 图2 “核采样”参数为1的生成结果1 图3 “核采样”参数为1的生成结果2 将“核采样”参数调小至0.1
对于使用AI进行预标注的图片Caption任务可设置以下两种方式的“标注要求”: 选择“全部标注”:要求标注人员需要对全部的数据进行人工标注后才可提交标注结果。 选择“可部分标注”:允许标注人员在确认AI预标注满足要求后,直接使用AI预标注功能完成数据集的标注并提交标注结果。 标
Studio大模型开发平台针对文本数据集预设了一套基础评估标准,涵盖了数据准确性、完整性、一致性、格式规范等多个维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建文本类数据集评估任务。 创建文本类数据集评估标准步骤如下: 登录ModelArts Stu