检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
计费项 盘古大模型分为模型订阅、数据资源、训练资源和推理资源四个收费项。 模型订阅按照订阅时长预付费,提供1个月到1年供客户选择,自支付完成开始计费。 数据智算单元、数据通算单元按单元使用数量和时长后付费,时长精确到秒,数据托管单元按订购数量和时长预付费,提供1个月到1年供客户选择。
如何将本地的数据上传至平台 ModelArts Studio平台支持从OBS服务导入数据。您可以将本地数据上传至OBS(对象存储服务),然后通过平台提供的“数据导入”功能,将存储在OBS中的数据导入至平台进行使用。 具体操作步骤如下: 上传数据至OBS:将本地数据上传至OBS服务,请详见通过控制台快速使用OBS。
导入数据过程中,为什么无法选中OBS的具体文件进行上传 在数据导入过程中,平台仅支持通过OBS服务导入文件夹类型的数据,而不支持直接导入单个文件。 您需要将文件整理到文件夹中,并选择该文件夹进行上传。 父主题: 大模型使用类问题
单击数据集名称查看加工任务的基本信息、加工详情、加工后的数据文件以及数据血缘。 在“基本信息”页签可查看数据集的详细信息及操作概览。 在“加工详情”页签可以查看数据集的加工步骤和运行日志。 在“数据文件”页签可下载加工后的数据文件,可以与原始数据进行比对,查看加工前后的差异。 在“数据血
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
如何查看预置模型的历史版本 ModelArts Studio平台支持查看预置模型的多个历史版本,并提供对历史版本进行训练等操作的功能。您还可以查看每个版本的操作记录、状态以及其他基础信息。 要查看预置模型的历史版本,您可以按照以下步骤操作: 进入平台的“空间资产 > 模型 > 预置”页面。
与其他服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
理解底层任务 需要站在模型的角度理解相关任务的真实底层任务,并清晰描述任务要求。 例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题
发布训练后的NLP大模型 NLP大模型训练完成后,需要执行发布操作,操作步骤如下: 在模型训练列表页面选择训练完成的任务,单击训练任务名称进去详情页。 在“训练结果”页面,单击“发布”。 图1 训练结果页面 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为资产同步显示在“空间资产
发布训练后的科学计算大模型 科学计算大模型训练完成后,需要执行发布操作,操作步骤如下: 在模型训练列表页面选择训练完成的任务,单击训练任务名称进去详情页。 在“训练结果”页面,单击“发布”。 图1 训练结果 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为资产同步显示在“空间资产
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、
如何利用提示词提高大模型在难度较高推理任务中的准确率 可以通过思维链的方式提高大模型在复杂推理任务中的准确率。 思维链是一种通过分步骤推理来提升大模型在复杂任务中表现的方法。通过引导模型思考问题的过程,可以使其在推理任务中得到更高的准确性,尤其是在涉及多步推理和复杂逻辑关系的任务中。 具体做法如下:
如何分析大模型输出错误回答的根因 大模型的输出过程通常是一个黑盒,涉及数以亿计甚至千亿计的参数计算,虽然这些参数共同作用生成输出,但具体的决策机制并不透明。 可以通过在提示词中引导模型输出思考过程,或者在模型输出后追问模型,帮助我们分析错误的根因。例如: “我注意到你犯了xxx的错误,请解释得出该结论的原因。”
训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个参数的值,可以提升模型回答的确定性,避免生成异常内容。
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
为什么微调后的盘古大模型只能回答训练样本中的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
比如,当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第三轮的回答。以下给出了几条多轮问答的数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。 A:你可以做什么? B:我可以做很多事情,比如xxxx
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进