检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
打开Grafana页面。 新打开一个浏览器窗口,在地址栏输入3中配置的root_url后。出现Grafana登录页面即代表在Notebook中安装和配置Grafana成功。首次登录用户名和密码为admin,登录成功后请根据提示修改密码。 父主题: 安装配置Grafana
单击“部署模型服务”进入部署页面,完成创建配置。 表1 部署模型服务 参数 说明 服务设置 服务名称 自定义部署模型服务的名称。 支持1~64位,以中文、大小写字母开头,只包含中文、大小写字母、数字、中划线、下划线的名称。 描述 部署模型服务的简介。支持256字符。 模型设置 部署模型 单击“选择模型”
在Linux上安装配置Grafana 适用场景 本章节适用于在Linux操作系统的PC中安装配置Grafana。 前提条件 一台可访问外网的Ubuntu服务器。如果没有请具备以下条件: 准备一台ECS服务器(建议规格选8U或者以上,镜像选择Ubuntu,建议选择22.04版本,本
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行install.sh文件,来安装依赖以及下载完整代码。命令如下:
向。Maas支持对NLP模型进行自动评测。 除使用Maas提供的评测能力外,您也可以在实际应用中验证模型的性能,进一步确保模型在真实环境中的表现符合预期。 场景描述 您可以使用预置数据集评测已部署的模型服务,更加直观地评估模型实际的输出效果。 约束限制 仅支持评测运行中的模型服务和已领取免费额度的预置服务。
委托授权ModelArts云服务使用SFS Turbo 本章节介绍如何配置ModelArts委托权限,允许用户使用专属资源池的网络中的“关联sfsturbo”和“解除关联”功能。 当用户新增委托并授权操作SFS Turbo时,请参考新增委托授权操作SFS Turbo。 当用户为已有的委托新增权限,授权操作SFS
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。
thQuant-W8A8”时才需要配置。建议使用默认值。 取值范围:0~1 默认值:0.5 压缩后模型权重保存路径 选择压缩后模型权重文件存放的OBS路径。 资源设置 资源池类型 资源池分为公共资源池与专属资源池。 公共资源池供所有租户共享使用。 专属资源池需单独创建,不与其他租户共享。
修改在线服务配置 对于已部署的服务,您可以修改服务的基本信息以匹配业务变化,更换模型的版本号,实现服务升级。 您可以通过如下两种方式修改服务的基本信息: 方式一:通过服务管理页面修改服务信息 方式二:通过服务详情页面修改服务信息 前提条件 服务已部署成功,“部署中”的服务不支持修改服务信息进行升级。
修改批量服务配置 对于已部署的服务,您可以修改服务的基本信息以匹配业务变化,更换模型的版本号,实现服务升级。 您可以通过如下两种方式修改服务的基本信息: 方式一:通过服务管理页面修改服务信息 方式二:通过服务详情页面修改服务信息 前提条件 服务已部署成功,“部署中”的服务不支持修改服务信息进行升级。
ist格式填入,默认安装包存在先后依赖关系(即写在前面的先安装,写在后面的后安装),且支持线下wheel包安装(wheel包必须与模型文件放在同一目录)。示例请参考导入模型时安装包依赖配置文件如何书写? health 否 health数据结构 镜像健康接口配置信息,只有“mode
+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_64架构的主机,操作系统ubuntu-18
推理关键特性使用 量化 剪枝 分离部署 Prefix Caching multi-step 投机推理 图模式 多模态 Chunked Prefill multi-lora guided-decoding 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM
的详细操作请参见添加订阅。 使用消息通知服务会产生相关服务费用,详细信息请参见计费说明。 自动停止 当使用付费资源时,可以选择是否打开“自动停止”开关。 开关关闭(默认关闭):表示任务将一直运行直至完成。 开关打开:表示启用自动停止功能,此时必须配置自动停止时间,支持设置为“1小
ook等资产,零代码完成AI建模和应用。 如果您想了解如何使用ModelArts Standard一键部署现有的模型,并在线使用模型进行预测,您可以参考使用ModelArts Standard一键完成商超商品识别模型部署。 ModelArts Standard同时提供了自动学习功
Notebook”,单击“创建”,在创建Notebook页面,资源池规格只能选择专属资源池。 使用子账号用户登录ModelArts控制台,选择“模型部署 > 在线服务”,单击“部署”,在部署服务页面,资源池规格只能选择专属资源池。 父主题: 典型场景配置实践
source”。 图3 配置Grafana 单击“Prometheus”,进入Prometheus配置页面。 图4 进入Prometheus配置页面 参考下图进行配置。 图5 配置Grafana数据源 Grafana安装方式不同,Grafana版本也可能不同,图5仅为示例,请以实际配置界面为准。
在ModelArts控制台购买Server资源。 资源配置 完成资源购买后,需要对网络、存储、软件环境进行相关配置。 资源使用 完成资源配置后,您可以登录到服务器进行训练和推理,具体案例可参考Lite Server资源使用。 资源管理 Lite Server提供启动、停止、切换
图1 Notebook实例详情页面 准备好密钥对。 密钥对在用户第一次创建时,自动下载,之后使用相同的密钥时不会再有下载界面(用户一定要保存好),或者每次都使用新的密钥对。 Step1 配置SSH 在本地的PyCharm开发环境中,单击File -> Settings -> Tools
安装配置Grafana 在Windows上安装配置Grafana 在Linux上安装配置Grafana 在Notebook上安装配置Grafana 父主题: 使用Grafana查看AOM中的监控指标