检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练科学计算大模型 科学计算大模型训练流程与选择建议 创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型
部署科学计算大模型 创建科学计算大模型部署任务 查看科学计算大模型部署任务详情 管理科学计算大模型部署任务 父主题: 开发盘古科学计算大模型
加工视频类数据集 清洗视频类数据集 标注视频类数据集 父主题: 加工数据集
加工气象类数据集 清洗气象类数据集 父主题: 加工数据集
评测NLP大模型 创建NLP大模型评测数据集 创建NLP大模型评测任务 查看NLP大模型评测报告 管理NLP大模型评测任务 父主题: 开发盘古NLP大模型
开发盘古CV大模型 使用数据工程构建CV大模型数据集 训练CV大模型 部署CV大模型
训练CV大模型 CV大模型训练流程与选择建议 创建CV大模型训练任务 查看CV大模型训练状态与指标 发布训练后的CV大模型 管理CV大模型训练任务 CV大模型训练常见报错与解决方案 父主题: 开发盘古CV大模型
训练预测大模型 预测大模型训练流程与选择建议 创建预测大模型训练任务 查看预测大模型训练状态与指标 发布训练后的预测大模型 管理预测大模型训练任务 预测大模型训练常见报错与解决方案 父主题: 开发盘古预测大模型
创建与管理知识库 知识库介绍 创建知识库 管理知识库 父主题: 开发盘古大模型Agent应用
API NLP大模型 科学计算大模型 Agent开发 Token计算器
温度主要用于控制模型输出的随机性和创造性。温度越高,输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。 请注意,
业务逻辑的复杂性 判断任务场景的业务逻辑是否符合通用逻辑。如果场景中的业务逻辑较为简单、通用且易于理解,那么调整提示词是一个可行的方案。 例如,对于一般的常规问题解答等场景,可以通过在提示词中引导模型学习如何简洁明了地作答。 如果场景涉及较为复杂、专业的业务逻辑(例如金融分析、医疗诊断等),则需要更为精确的处理方式:
训练指标说明 模型 训练指标 指标说明 NLP大模型 训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的
同一资源是否同时支持包年/包月和按需计费两种模式 盘古大模型的模型订阅、数据托管单元、推理单元默认采用包周期计费。 数据智算单元、数据通算单元默认采用按需计费。 训练单元采用包周期和按需计费两种方式。 两种计费方式不能共存,只支持按照一种计费方式进行订购。 父主题: 计费FAQ
识别视频中是否包含Logo。 视频黑边识别 识别视频中是否包含黑边。 密集文字识别 识别视频中是否包含密集文字,达到密集文字面积占比的视频则为含密集文字视频,一般裁剪面积占比≥7%为密集文字视频。 父主题: 数据集清洗算子介绍
训练指标说明 模型 训练指标 指标说明 CV大模型 训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 频率加权交并比 频率加权交并
在城市政务“一网统管”的场景中,往往建设有庞大复杂的城市事件类别体系,包含了繁多细碎的事项类别,如垃圾暴露、道路破损、围栏破损等,一个城市一般有几百种事件类别。同时,不同城市可能还有不同的标准,某城市关注某一些特定事件类别,另一个城市又关注另一些特定事件类别。因此,城市政务场景面临着众多碎片化AI需求场景。
训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。这里代表高空Loss(深海Loss)和表面Loss(海表Loss)的综合Loss。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 高空Loss(深海Loss)
度)。 25km*25km。 全球范围,纬度90N~-90S,经度0W~360E。 训练集和验证集均推荐使用>1个月的历史数据。 训练数据一般可通过公开数据集获取,例如ERA5。ERA5是由欧洲中期天气预报中心(ECMWF)提供的全球气候的第五代大气再分析数据集,它覆盖从1940
"target": "你有什么办法让孩子写作业吗"} 中控模块:对于中控模块,可以首先尝试使用基础功能模型基于prompt来进行相关中控逻辑的判断,一般情况下能够满足绝大部分场景的需求。如果针对特别细分的垂域场景,且需要中控逻辑能够取得接近100%准确率的效果,则可以按照需求可以准备对应的