检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
权限管理 在华为云上购买GES资源后,如果您需要给企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,可以使用统一身份认证服务(Identity and Access Management,简称IAM)进行精细的权限管理。该服务提供用户身份认证、权限分配、访问控制等功能
Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景 共同邻居算法(Common Neighbors)适用于电商、社交等多领域的推荐场景。 参数说明 表1 共同邻居参数说明
创建、删除、访问、升级等操作。 说明: 拥有该权限的用户需要同时拥有Tenant Guest、Server Administrator、VPC Administrator权限。 如果需要绑定/解绑EIP,则还需要拥有Security Administrator角色用于创建委托。Security
在“数据源管理”页签单击“新建”。 图1 新建数据源管理 在新建数据源页面,输入对应的数据源信息,具体参数如下: 数据源名称:自定义名称,长度在4位到50位之间,必须以字母开头,不区分大小写,可以包含字母、数字、下划线,不能包含其他的特殊字符。 数据源类型:按实际数据源选择,目前支持Mysql、神
指定某个起始节点id,结合消息传递时间递增和BFS遍历顺序(temporal bfs算法),搜索周围与之相关联的点,输出对应各节点的到达时间以及和源起点之间的距离。具体操作步骤如下: 在左侧“动态图”操作区的“动态拓展”模块内填写参数: 开始和结束的时间以及属性值在上述章节时间轴设置中已经设置
pagerank算法 功能介绍 根据输入参数,执行PageRank算法。 PageRank算法又称网页排名算法,是一种由搜索引擎根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。
Bigclam算法(bigclam) 功能介绍 根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.0/{pr
1:百万边 2:千万边 3:一亿边 4:十亿边 5:百亿边 6:持久化版 401:十亿增强边 vpc_id String 虚拟私有云ID。 subnet_id String 指定虚拟私有云下的子网ID。 security_group_id String 安全组ID。 replication
Cesna算法(cesna) 功能介绍 根据输入参数,执行Cesna算法。 Cesna算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的。此外,该算法还利用了节点属性对社区进行建模,即假设节点的属性也是根据社区关系生成的。
在“数据迁移”页签单击“新建”。 图1 新建数据迁移 设置数据源配置参数。 任务名称:自定义名称,不能与已有任务名称重复,长度在4位到50位之间,必须以字母开头,不区分大小写,可以包含字母、数字、下划线,不能包含其他的特殊字符。 数据源:根据需要选择已创建完成的数据源。 关联图名称:选择数据源后自动显示。
GES的数据通过对象存储服务(OBS)上传或导出,存储计费按照OBS的计费规则,详情可参考对象存储服务价格详情。 公网流量 GES支持绑定公网IP,所需费用按照虚拟私有云(VPC)服务的EIP计费规则进行计费;GES在华为云内部网络产生的流量不计费。 图引擎服务计费详情及样例,请参见产品价格详情。您可以通过图
PageRank算法 概述 PageRank算法又称网页排名算法,是一种由搜索引擎根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个Pag
改参数,单击画布左下方进行设置在时间轴设置框内填写,此处不可填写。 sources:表示群体内包含的节点ID,最多可以输入十万个节点,节点之间需要用逗号隔开。 图1 群体演化模块 输入完成后,单击“群体演化”模块右侧的按钮,运行结果将在画布上展示。 图2 动态图展示 界面元素 说明
sources 是 起点ID集合 String 标准csv格式,ID之间以英文逗号分隔,例如:["Alice","Nana"]。 个数不大于100000。 - targets 是 终点ID集合 String 标准csv格式,ID之间以英文逗号分隔,例如:["Alice","Nana"]。 个数不大于100000。
标准CSV格式,边的起点与终点之间以英文逗号分隔,各边之间以换行符“\n”分隔,例如:“1,2\n2,3”。 vertices 是 需匹配的子图上各点的label String 标准CSV格式,点与其label之间以英文逗号分隔,各点与其label对之间以换行符“\n”分隔,点与sample中点相对应,例如:“1
点集最短路(Shortest Path of Vertex Sets) 用于发现两个点集之间的最短路径。适用于互联网社交、金融风控、路网交通、物流配送等场景下的区块之间关系分析。 关联路径(n-Paths) 该算法用于寻找图中两节点之间在k层关系内的n条路径。适用于关系分析、路径设计、网络规划等场景。
标准CSV格式,边的起点与终点之间以英文逗号分隔,各边之间以换行符“\n”分隔,例如:“1,2\n2,3”。 vertices 是 需匹配的子图上各点的label String 标准CSV格式,点与其label之间以英文逗号分隔,各点与其label对之间以换行符“\n”分隔,点与sample中点相对应,例如:“1
点集最短路(Shortest Path of Vertex Sets) 用于发现两个点集之间的最短路径。适用于互联网社交、金融风控、路网交通、物流配送等场景下的区块之间关系分析。 关联路径(n-Paths) 该算法用于寻找图中两节点之间在k层关系内的n条路径。适用于关系分析、路径设计、网络规划等场景。
sources 是 起点ID集合 String 标准csv格式,ID之间以英文逗号分隔,例如:["Alice","Nana"]。 个数不大于100000。 - targets 是 终点ID集合 String 标准csv格式,ID之间以英文逗号分隔,例如:["Alice","Nana"]。 个数不大于100000。
的用户和商品、互联网中的网页等。 图数据模型中的边代表关系,如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 如果点被删除了,基于该点的边会自动删除。 父主题: API使用类