检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在预训练模型中加载参数请参考如何在训练中加载部分训练好的参数? 解析输入路径参数、输出路径参数 运行在ModelArts Standard的训练作业会读取存储在OBS服务的数据,或者输出训练结果至OBS服务指定路径,输入和输出数据需要配置2个地方: 训练代码中需解析输入路径参数和输出路径参数。ModelArts
flow、开发环境、模型训练、在线服务、专属资源池涉及到需要停止的计费项如下: 自动学习:停止因运行自动学习作业而创建的训练作业和在线服务。删除存储到OBS中的数据及OBS桶。 Workflow:停止因运行Workflow作业而创建的训练作业和在线服务。删除存储到OBS中的数据及OBS桶。
服务管理概述 服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。
出现此问题,一般是因为后台服务故障导致的,建议稍等片刻,然后重新部署在线服务。如果重试超过3次仍无法解决,请获取如下信息,并联系华为云技术支持协助解决故障。 获取服务ID。 进入“部署上线>在线服务”页面,在服务列表中找到自动学习任务中部署的在线服务,自动学习部署的服务都是以“exeML-”开头的
自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: Standard自动学习
删除服务存在如下两种删除方式。 根据部署在线服务生成的服务对象删除服务。 根据查询服务对象列表返回的服务对象删除服务。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象删除服务
式api参数输入、输出解析方式不同,目前支持tgi、vllm等方式,本案例使用vllm部署方式。 若要在生产环境中进行精度测试,还需修改benchmark_eval/config/config.json中app_code,app_code获取方式见访问在线服务(APP认证)。 Step2
6-gpu"。修改完成后,重新执行导入模型和部署为在线服务的操作。 参数设置完成后,单击“下一步”,确认规格参数,单击“提交”,完成在线服务的部署。 您可以进入“模型部署 > 在线服务”页面,等待服务部署完成,当服务状态变为“运行中”时,表示服务部署成功。预计时长2分钟左右。 在线服务部署完成后,您可以单
都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析 data_handler的基类是BaseDatasetHandle
API接口创建训练作业和部署服务时,如何填写资源池的参数? 调用API接口创建训练作业时,“pool_id”为“资源池ID”。 调用API接口部署在线服务时,“pool_name”为“资源池ID” 。 图1 资源池ID 父主题: API/SDK
返回结果如图2所示:predict为目标列的预测结果。 图2 预测结果 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在“在线服务”的操作列单击“更多>停止”,即可停止在线服务的部署,避免产生不必要的费用。如果需要继续使用此服务,可单击“启动”恢复。 如果您
都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析 data_handler的基类是BaseDatasetHandle
都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/tasks/preprocess/data_handler.py。 基类BaseDatasetHandler解析 data_handler的基类是BaseDataset
都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析 data_handler的基类是BaseDatasetHandle
都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析 data_handler的基类是BaseDatasetHandle
都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析 data_handler的基类是BaseDatasetHandle
型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模
都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析 data_handler的基类是BaseDatasetHandle
选择需要发布的数据集。 许可证类型 根据业务需求和数据集类型选择合适的许可证类型。 单击许可证类型后面的感叹号可以查看许可证详情。 说明: 部分许可证网站说明地址是海外网站,用户可能会因网络限制无法访问。 谁可以看 设置此数据集的公开权限。可选值有: “公开”:表示所有使用AI Gallery的用户都可以查看且使用该资产。
型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模