检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
# 微调数据文件 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账号中的AK和SK进行签名验证,确保通过授权的账号才能访问指定的OBS资源。
表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。
Notebook提示磁盘空间已满 问题现象 在使用Notebook时,提示磁盘空间已满:No Space left on Device。 在Notebook执行代码时,出现如下报错,提示:Disk quato exceeded。 原因分析 在JupyterLab浏览器左侧导航删除文件
要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是id、url、t
要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是id、url、t
通过对ModelArts模型管理的能力进行封装,实现将训练后的结果注册到模型管理中,便于后续服务部署、更新等步骤的执行。主要应用场景如下: 注册ModelArts训练作业中训练完成的模型。 注册自定义镜像中的模型。 属性总览 您可以使用ModelStep来构建模型注册节点,ModelStep结构如下:
使用华为云账号登录CCE管理控制台。 在CCE集群详情页面,单击“节点管理”页签,在“节点”页签中单击需要登录的节点名称,跳转至弹性云服务器页面。 图10 节点管理 单击“远程登录”,在弹出的窗口中,单击“CloudShell登录”。 图11 远程登录 在CloudShell中设置密码等参数后,单击
原因分析 出现该问题的可能原因如下: 桶中的对象不存在,请检查OBS路径中的内容是否存在。具体错误码请参见OBS官方文档。 处理方法 检查OBS路径及内容格式是否正常。 必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用Mode
选择“预置框架”,引擎选择“PyTorch”,PyTorch版本根据训练要求选择。 代码目录 选择OBS桶中训练code文件夹所在路径,例如“obs://test-modelarts/code/”。 启动文件 选择代码目录中训练作业的Python启动脚本。例如“obs://test-modelarts/code/main
要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是id、url、t
list_datasets(session, dataset_type=0) print(dataset_list) 示例三:根据数据集名称查询数据集列表 # 查询名称中包含dataset的数据集列表 dataset_list = Dataset.list_datasets(session, dataset_name="dataset")
图6 Reload Window and Open 在弹出的提示中,勾选“Don't ask again for this extension”,然后单击"Open"。 远程连接Notebook实例。 远程连接执行前,会自动在(Windows:C:\Users\{{user}}\
1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox
创建分布式并行模型,每个进程都会有相同的模型和参数。 创建数据分发Sampler,使每个进程加载一个mini batch中不同部分的数据。 网络中相邻参数分桶,一般为神经网络模型中需要进行参数更新的每一层网络。 每个进程前向传播并各自计算梯度。 模型某一层的参数得到梯度后会马上进行通讯并进行梯度平均。
模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.907-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 Ascend
模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.908-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 Ascend
SDK报错“ERROR: Could not install packages due to an OSError” ModelArts SDK下载文件目标路径设置为文件名,部署服务时报错
要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是id、url、t
初始化训练作业,如果2指定的训练数据在OBS上,这里会将数据下载到local_path中。 执行训练任务,用户的训练代码需要将训练输出保存在4中指定的local_path中。 将训练任务得到的输出上传到4指定的obs_path中,日志上传到第六步指定的log_url中。 同时,可以在任务名后增加时间后缀,区分不同的任务名称。
Face权重时存放目录绝对或相对路径。请根据实际规划修改。 template qwen 必须修改。用于指定模板。如果设置为"qwen",则使用Qwen模板进行训练,模板选择可参照表1中的template列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096