检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ials.csv文件,包含AK/SK信息。 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。 使用推理SDK章节示例代码均以ak和sk保存在环境变量中来实现身份验证。 登录“我的凭证”页面,获取“IAM用
配置服务访问授权 配置OBS访问授权 盘古大模型服务使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够顺利进行存储数据、训练模型等操作,需要用户配置访问OBS服务的权限。 登录ModelArts
使用盘古预置NLP大模型进行文本对话 场景描述 此示例演示了如何使用盘古能力调测功能与盘古NLP大模型进行对话问答。您将学习如何通过调试模型超参数,实现智能化对话问答功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型
管理盘古工作空间成员 如果您需要为企业员工设置不同的访问权限,以实现功能使用权限和资产的权限隔离,可以为不同员工配置相应的角色,以确保资产的安全和管理的高效性。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可以跳过本章节,不影响您使用盘古的其他功能。
提示词应用示例 应用提示词实现智能客服系统的意图匹配 应用提示词生成面试题目 父主题: 提示词写作实践
页面可以查看评估状态。 图1 查看提示词评任务状态 单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问
开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户): 平台提供了Prompt提示词工程和插件自
本样例场景帮助用户利用数据集评估标准评估和优化数据质量。 步骤5:发布文本类数据集 本样例场景实现将处理好的数据集发布为模型训练可用的数据集。 步骤6:训练NLP大模型 本样例场景实现NLP大模型的训练操作。 步骤7:压缩NLP大模型 本样例场景实现NLP大模型的压缩操作。压缩是指通过减少模型的参数量或计算复杂
答案,展示在前端界面。 在该框架中,query改写模块、中控模块和问答模块由大模型具体实现,因此涉及到大模型的训练、优化、部署与调用等流程。pipeline编排流程可以基于python代码实现,也可以人工模拟每一步的执行情况。检索模块可以使用Elastic Search来搭建,也
如果用户具备多个空间的访问权限,可在页面左上角单击切换空间。 图2 切换空间 管理盘古工作空间 盘古工作空间支持用户查看当前空间详情,修改空间名称与描述,还可以对不需要的空间实现删除操作。 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图3 进入操作空间 单击左侧导航栏的“空间管理”,在“空间设置”页签中可执行如下操作:
创建工作流 支持开发者基于Agent平台创建工作流。创建工作流时,工作流默认包含了开始、结束和大模型组件。开发者可基于该工作流,添加更多的组件,实现业务流程的编排。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent开发”,将跳转至Agent开发平台。
创建盘古多语言文本翻译工作流流程 操作步骤 说明 步骤1:创建并配置插件 本样例场景实现文本翻译插件的创建与配置。 步骤2:创建并配置工作流 本样例场景实现多语言文本翻译工作流的创建与配置。 步骤3:试运行工作流 本样例场景实现工作流的试运行。 步骤1:创建并配置插件 登录ModelArts S
应用提示词生成面试题目 应用场景说明:将面试者的简历信息输入给大模型,基于简历生成面试问题,用于辅助人工面试或实现自动化面试。 父主题: 提示词应用示例
用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词,它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都起着重要作用。用户可以通过提示词工程来提高大语言模型的安全性,还可以赋能大语言模型,如
功能总览 功能总览 全部 数据工程工具链 模型开发工具链 应用开发工具链 能力调测 应用百宝箱 数据工程工具链 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、配比和管理等功能。 该工具链能够高效收集和处
格式的数据集,instruction对应问题,input对应上下文或者背景信息,output对应答案,用户可以上传自定义的python脚本实现数据集格式的转换。平台页面中会提供脚本示例,可下载作为参考。 如果使用该数据集训练盘古大模型,请将发布格式配置为盘古格式。 设置数据集的“
与其他服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发 > 提示词工程 > 提示用例管理”,单击页面右上角“创建提示用例集”。 图3 提示用例管理 在“创建数据集”页面完成数据集的上传。 图4 创建提示词评估数据集 父主题: 批量评估提示词效果
该数据集的创建、导入、上线等操作记录。 下载数据文件。在“数据获取”页面,单击数据集名称,在“数据文件”页签,单击文件操作列的“下载”,可实现下载数据文件操作。 查看数据血缘。在“数据获取”页面,单击数据集名称,在“数据血缘”页签,可以查看当前数据集所经历的完整操作,如加工、标注等。
盘古推理SDK简介 推理SDK概述 盘古大模型推理SDK是对REST API进行的封装,通过该SDK可以处理用户的输入,生成模型的回复,从而实现自然流畅的对话体验。 表1 推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(/chat/completions)