检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
网还是公网? 在同一区域,ModelArts通过OBS的API访问OBS中的文件属于内网通信,不消耗公网流量费。 如果是通过互联网从OBS下载数据到本地,这时候会产生OBS公网流量费。OBS的详细计费说明可以参见计费项。 父主题: API/SDK
容。 该解决方案可以应用于如下场景: 新闻门户网站: 自动将新闻内容归类到相应板块,如科技、体育或国际新闻,以提升用户体验和内容检索效率。 社交媒体平台: 对用户分享的新闻链接进行智能分类,帮助用户迅速定位到感兴趣的话题。 内容推荐系统: 根据用户的阅读偏好和历史行为,智能推荐相关新闻,增强用户粘性和满意度。
使用MoXing复制数据报错 问题现象 调用moxing.file.copy_parallel()将文件从开发环境的OBS桶中复制到其他OBS桶里,但是桶内没有出现目标文件。 使用MoXing复制数据不成功,出现报错。如: ModelArts开发环境使用MoXing复制OBS数据报错:keyError:
从0制作自定义镜像用于创建训练作业(MindSpore+Ascend) 本案例介绍如何从0到1制作Ascend容器镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MindSpore,训练使用的资源是专属资源池的Ascend芯片。 场景描述 目标:构建安
从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_
数据准备使用流程 ModelArts是面向AI开发者的一站式开发平台,能够支撑开发者从数据到模型的全流程开发过程,包含数据处理、算法开发、模型训练、模型部署等操作。并且提供AI Gallery功能,能够在市场内与其他开发者分享数据、算法、模型等。为了能帮用户快速准备大量高质量的数
从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 “商超商品识别”模型可以识别81类常见超市商品(包括蔬菜、水果和饮品)
误后,回到工作流页面单击“继续运行”。 在“确认是否继续允许”的弹窗中,单击“确定”,工作流会继续从数据标注节点依次运行到服务部署节点。该段时间不需要用户做任何操作。 当工作流运行到“服务部署”节点,“服务部署”节点会变成橙色,双击“服务部署”节点。在服务部署页签中,可以看到状态变为了“等待输入”。
源的到期时间统一到各个月的某一天(详细介绍请参见统一包年/包月资源的到期日)。确认配置费用后单击“去支付”。 进入支付页面,选择支付方式,确认付款,支付订单后即可完成续费。 统一包年/包月资源的到期日 如果您持有多台到期日不同的专属资源池,可以将到期日统一设置到一个日期,便于日常管理和续费。
上传Step1 准备训练数据中下载的MNIST数据集压缩包文件到OBS的“mnist-data”文件夹中。 上传数据到OBS中时,请不要加密,否则会导致训练失败。 文件无需解压,直接上传压缩包至OBS中即可。 上传训练脚本“train.py”到“mnist-code”文件夹中。 上传推理脚本“customize_service
也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。 回归 回归反映的是数据属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量
返回结果 请求发送以后,您会收到响应,包含:状态码、响应消息头和响应消息体。 状态码 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于获取用户Token接口,如果调用后返回状态码为“201”,则表示请求成功。 响应消息头 对
--device=/dev/davinci0:挂载NPU设备,示例中挂载了单张卡davinci0。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 步骤四 进入容器运行 进入容器后执行启动命令。 docker exec -it ${container_name}
--device=/dev/davinci0:挂载NPU设备,示例中挂载了单张卡davinci0。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 Step4 进入容器运行 进入容器后执行启动命令。 docker exec -it
导入数据到ModelArts数据集 数据导入方式介绍 从OBS导入数据到ModelArts数据集 从DWS导入数据到ModelArts数据集 从DLI导入数据到ModelArts数据集 从MRS导入数据到ModelArts数据集 从本地上传数据到ModelArts数据集 父主题:
操作,如创建桶、上传文件/文件夹、下载文件/文件夹、删除文件/文件夹等。 obsutil安装和配置的具体操作指导请参见obsutils快速入门。 操作命令中的AK/SK和Endpoint要换成用户实际获取的AK/SK和Endpoint。 (可选)工作空间配置 ModelArts支
历史待下线案例 使用AI Gallery的订阅算法实现花卉识别 示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MindSpore+Ascend)
如创建训练作业等。 方式一:从算法详情页进入管理控制台 在算法详情页单击“前往控制台”。 在弹出的“选择云服务区域”页面选择ModelArts所在的云服务区域,单击“确定”跳转至ModelArts控制台的“算法管理 > 我的订阅”页面。 方式二:从“我的Gallery”进入管理控制台