检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
基本信息 名称 自定义的名称。只能包含数字、大小写字母、下划线和中划线,长度不能超过64位且不能为空。 名称创建之后不支持修改。 数据源 从右侧下拉框中选择RES系统中已有的数据源。当无可用数据源时,此下拉框为空。 描述 对于该场景的描述信息。 场景规格 - 选择离线计算、实时计算、排序模型训练规格和在线并发数。
“场景类型”:选择基于用户推荐物品。 “服务类型”:选择推荐引擎。 “数据源”:选择步骤2中创建完成的数据源。 “数据区间”:选取离线数据中最近N天的数据(从数据中最近的有效时间之前30天)。 “场景规格”:由于此样例中使用的测试数据量较小,此处场景规格均默认选最小配置,“在线并发规格”是指在线服
为云提供开放式推荐能力,其他友商主打场景式推荐。 场景式推荐 提供多维度的场景推荐,含猜你喜欢、关联推荐、热门推荐,一键式操作,降低客户接入门槛。 近线处理能力 支持实时数据的接入和更新、模型在线学习,近线处理实时训练兴趣模型。 全面的推荐实体 支持以用户推荐物品、以用户推荐用户
CloudTable创建集群操作详请参见表格存储服务用户指南> 集群模式> 集群操作指导> 创建集群章节。 DIS创建通道操作详请参见数据接入服务用户指南> 入门> 步骤1:开通DIS通道章节。 CloudTable集群需要开启IAM统一身份认证。 创建资源完成后,创建的资源会展示在“资源中心”列表中,如图1所示。
产品介绍 什么是RES 推荐系统应用场景 推荐系统产品功能 推荐系统基本概念 02 入门 使用推荐系统管理控制台快速搭建推荐服务,利用推荐系统的智能场景和自定义场景功能得到满意的推荐结果。 快速入门 智能场景(猜你喜欢) 自定义场景(热度推荐) 05 实践 根据用户的离线历史数据,
如何开始使用RES? 使用RES,从资源准备到在线服务完成推荐的全流程,如图1所示。 图1 RES操作流程 表1 使用流程说明 流程 子任务 说明 详细指导 数据源 准备离线数据源 需要您准备包含用户数据,物品数据,行为数据上传至对象存储服务(OBS)用于推荐系统的离线计算。 准备离线数据源
RES操作流程 操作流程 本章节介绍使用RES,从资源准备到在线服务完成推荐的全流程。RES流程图如图1所示。 图1 RES操作流程 表1 使用流程说明 流程 子任务 说明 详细指导 数据源 准备离线数据源 需要您准备包含用户数据,物品数据,行为数据上传至对象存储服务(OBS)用于推荐系统的离线计算。
RES操作流程 本章节介绍使用RES,从资源准备到在线服务完成推荐的全流程。RES流程图如图1所示。 图1 RES操作流程 表1 使用流程说明 流程 子任务 说明 详细指导 准备资源 开通相关资源 基于您的业务需求,您需要开通RES相关服务,包括: 计算引擎DLI、ModelArts
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于获取用户Token接口,如果调用后返回状态码为“201”,则表示请求成功。 响应消息头 对应请求
每个用户最多生成多少个推荐结果。 开启时间跨度 不开启取全部数据,开启则指定从数据源中取最近天数或小时数的行为数据计算相似度。 时间单位 开启时间跨度后,支持按照天或者小时为单位从指定从数据源中取行为数据计算相似度。 时间跨度 用于指定从数据源中取最近多少天或者多少小时的行为数据计算热度。默认取全部数据。
输入流DIS通道名称。该通道用于接收近线行为数据。 starting_offsets 是 String 读取DIS数据的起始位置。 LATEST:从最新的数据开始读取。 EARLIEST:从最旧的数据开始读取。 表9 out_stream_conf 参数说明 参数名称 是否必选 参数类型 说明 stream_name
数语言或框架都要求您从请求消息中单独传递它,所以在此单独强调。 URI-scheme:表示用于传输请求的协议,当前所有API均采用HTTPS协议。 Endpoint:指定承载REST服务端点的服务器域名或IP,不同服务不同区域的Endpoint不同,您可以从地区和终端节点中获取。
起始位置:读取DIS数据的起始位置,latest表示从最新的数据开始读取,earliest表示从最旧的数据开始读取。 输出流位置:行为数据流处理后的输出配置。选择对应的DIS通道名称进行存放。输出流存放的数据属于流式训练作业的中间数据,用户无需获取或发送数据到输出流绑定的数据通道,只需确保该通道仅供本作业作为输出流使用。
特征工程 特征工程可对推荐系统的离线数据进行处理,它包含两个功能: 从离线数据中提取用户、物品画像和RES内部通用格式数据; 把RES内部通用格式数据处理成训练排序模型所需的训练数据、测试数据等。 与功能对应,特征工程的两个任务分别是: 初始用户画像-物品画像-标准宽表生成 排序样本预处理
基本信息 名称 自定义的名称。只能包含数字、大小写字母、下划线和中划线,长度不能超过64位且不能为空。 名称创建之后不支持修改。 数据源 从右侧下拉框中选择RES系统中已有的数据源。当无可用数据源时,此下拉框为空。 描述 对于该场景的描述信息。 场景规格 - 选择离线计算、实时计算、排序模型训练规格和在线并发数。
label:客体的属性名称(可为字符串或字符串数组类型)。 value:相应的属性值。 weight:该属性值的匹配权重,多个匹配条件做加权汇总后按分值从大到小给出候选集。 filter_info 搜索的过滤信息。 black_list:客体需要过滤的黑名单。 range:选定一个数值型属性(l
(可选)在目标召回策略右侧,单击“删除”,可以删除该策略。 策略设置完成后,单击“确定”。作业一般需要运行一段时间,根据您的数据量和资源不同,训练时间将耗时几分钟到几十分钟不等,请您耐心等待。 您可以前往召回策略列表,查看作业的基本情况。在作业列表中,刚创建的作业“状态”为“计算中”,当作业“状态”变为
ID。 离线过滤 过滤 过滤数据来源于过滤规则产生的候选集,单击“选择”获取过滤的任务别名和UUID。 在线过滤 【去重】物品属性 属性名从画像算子生成,如“product_color”,则对产品颜色相同的物品进行去重。 【去重】忽略长度 截断物品ID末尾指定长度后的字符串进行去
创建自定义场景 自定义场景基于用户群体不同推荐场景的需求,提供了多种多样的推荐策略和算法,实现了端到端的自定义推荐场景搭建,使每一个推荐场景都能得到针对性的推荐效果提升。 前提条件 已经存在创建成功并完成数据探索的数据源。 由于训练作业运行需消耗资源,确保账户未欠费。 确保您使用的OBS目录与RES在同一区域。
与“初始用户画像-物品画像-标准宽表生成”结果保存路径一致。 说明: 在使用通用格式数据之前,需要先进行特征工程算子计算。 通用格式数据:从用户属性表、物品属性表和用户操作行为表中提取用户、物品特征和用户行为,并生成JSON数据,即内部通用格式。 通用格式时间:用户行为数据时间范围,可只有起始时间、结束时间或为空。