检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
是否必选 参数类型 描述 final_annotation 否 Boolean 是否直接导入到最终结果。可选值如下: true:标签导入到已标注(默认值) false:标签导入到待确认,导入到待确认状态目前仅支持的数据集类型为图像分类和物体检测。 label_format 否 LabelFormat
注册镜像。登录ModelArts控制台,在左侧导航栏选择“镜像管理”,进入镜像管理页面。单击“注册镜像”,镜像源即为推送到SWR中的镜像。请将完整的SWR地址复制到这里即可,或单击可直接从SWR选择自有镜像进行注册,类型加上“GPU”,如图1所示。 图1 注册镜像 登录ModelArts管理控制台,在左侧导航栏中选择“开发空间
预训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
2312-aarch64-snt9b-20240727152329-0f2c29a cann_8.0.rc2 pytorch_2.1.0 驱动23.0.6 从SWR拉取 不同软件版本对应的基础镜像地址不同,请严格按照软件版本和镜像配套关系获取基础镜像。 Step1 检查环境 请参考DevServe
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
不足的部分用黑色填充。 angle_min:旋转角度随机取值范围的最小值,每张图片会从范围中随机取值作为自己的参数。默认值为90° angle_max:旋转角度随机取值范围的最大值,每张图片会从范围中随机取值作为自己的参数。默认值为-90° do_validation:数据扩增前是否进行数据校验。默认值为True。
针对部署在公共资源池的服务,可以通过access_address属性从输出中获取注册在公网的推理地址。 针对部署在专属资源池的服务,除了可以获取注册在公网的推理地址,还能通过cluster_inner_access_address属性从输出中获取内部使用的推理地址,并且该地址只能在其他推理服务中进行访问。
展示当前服务的“资源统计信息”和“模型调用次数统计”。 “资源统计信息”:包括CPU、内存、GPU、NPU的可用和已用信息。 “模型调用次数统计”:当前模型的调用次数,从模型状态为“已就绪”后开始统计。(websocket服务不显示) 事件 展示当前服务使用过程中的关键操作,比如服务部署进度、部署异常的详细原因、服务被启动、停止、更新的时间点等。
径。 发布算法到AI gallery 发布算法:创建完成的算法,支持发布到AI Gallery,并分享给其他用户使用。 在ModelArts Standard控制台,在“资产管理 > 算法管理 > 我的算法”页面,单击算法名称进入详情页,单击“发布”,在“发布资产到AI Gall
资源池的高可用冗余节点数时,会导致任务持续等待。 高可用冗余节点的运行机制: 高可用冗余节点将被隔离,默认设置为不可调度,工作负载无法调度到节点上。 高可用冗余节点会作为备用节点与节点的故障检测配合使用,为资源池提供故障节点自动切换能力,高可用冗余节点能够在普通节点故障时自动进行
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
K-SK认证模式,示例代码如下。 from modelarts.session import Session # 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全; # 本示例以ak和sk保存在环境变量中来
95df609bb38/LLaVA-NeXT/llava/model/multimodal_encoder/ 步骤七 下载数据集 数据集需从huggingface下载LLaVA-Pretrain,VideoGPT-plus_Training_Dataset(其中的vcg-plus_112K
预训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
服务实例只能调度到指定节点,指定节点不存在则失败。preferred表示弱亲和,服务实例倾向于调度到指定节点,指定节点不满足调度条件,则会调度到其他节点。 pool_infos 否 Array of AffinityPoolInfo objects 配置亲和策略到指定的集群,并指定集群的节点。
增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的训练数据,缓解了存储资源有限的问题;另一方面,增
analysis中对应维度的各项分析及其优先级。 红色为高优先级,黄色为中等优先级,绿色为低优先级。参考html进行分析调优时,请按照优先级从高到低依次进行并测试调优后性能,快速解决重点问题。 图1 html报告总览-三大模块 当前advisor的performance problem