检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
取消Job(1.0.0) 功能介绍 用于取消已经提交的作业。 只有导出图,导入图,点过滤查询、边过滤查询、多跳过滤查询(Filtered-query V2)、执行算法、增加索引返回的Job支持取消。 支持取消的算法有:topicrank、pagerank、personalrank
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
filtered_n_paths参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 起始点 String 图内部点 无 target 是 目标点 String 图内部点 无 k 是 跳数 Int [2,6] 2 n 是 路径数 Int [1,1000] 1 父主题: 算法参考
Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness Centrality”越大,其在所在图中的位置越靠近中心。
给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 节点的ID。 String
将默认为1。 说明: 边上权重应大于0。 - seeds 否 节点ID String 当图较大时,运行betweenness较慢,可以设置seeds作为采样节点,进行近似运算,seeds节点越多越接近准确解。输入节点个数不大于100000。 - k 否 采样个数 Integer
扩副本(2.2.23) 功能介绍 扩副本能力允许动态扩容多个从节点,扩容的从节点可以处理读请求,从而提高读请求性能。 一万边和百亿边规格的图暂不支持扩副本。 进行扩副本操作后,不支持扩容图操作。 如果要对图进行扩容和扩副本两个操作,需要您先进行扩容图操作,再进行扩副本操作。 调试
sources 是 起点ID集合,多个节点ID以逗号分隔(即,标准CSV输入格式) String source节点的个数不超过10000个 - - targets 是 终点ID集合,多个节点ID以逗号分隔(即,标准CSV输入格式) String target节点的个数不超过10000个
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
将默认为1。 说明: 边上权重应大于0。 - seeds 否 节点ID String 当图较大时,运行betweenness较慢,可以设置seeds作为采样节点,进行近似运算,seeds节点越多越接近准确解。输入节点个数不大于100000。 - k 否 采样个数 Integer
共同邻居算法(Common Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景 共同邻居算法(Common Neighbors)适用于电商、社交等多领域的推荐场景。
Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/Q。每个节点出发生成多个随机步,反映出网络的结构信息。
exIndex”为全局的Composite类型的点索引。 “GlobalCompositeEdgeIndex”为全局的Composite类型的边索引。 “CompositeVertexIndex”为局部的Composite类型的点索引。 “CompositeEdgeIndex”为局部的Composite类型的边索引。
需匹配的子图的边集, 点的ID要求为非负整数 String 标准CSV格式,边的起点与终点之间以英文逗号分隔,各边之间以换行符“\n”分隔,例如:“1,2\n2,3”。 vertices 是 需匹配的子图上各点的label String 标准CSV格式,点与其label之间以英文
连通分量(connected_component) 功能介绍 根据输入参数,执行连通分量(Connected Component)算法。 连通分量代表图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强连通分量(strongly connected component),不考虑路径方向的为弱连通分量(weakly
带一般过滤条件最短路径算法(Filtered Shortest Path)寻找两点间满足过滤条件的最短路径,如有多条,返回任意一条最短路径。 适用场景 带一般过滤条件的最短路径算法(Filtered Shortest Path)适用于路径设计、网络规划等场景,通过对点边条件的过滤,控制最短路径的生成。 参数说明 表1
扩副本(2.2.23) 功能介绍 扩副本能力允许动态扩容多个从节点,扩容的从节点可以处理读请求,从而提高读请求性能。 一万边的图暂不支持扩副本。 进行扩副本操作后,不支持变更图规格操作。 如果要对图进行变更规格和扩副本两个操作,需要您先进行变更图规格操作,再进行扩副本操作。 持久化版图不支持调用接口进行扩副本操作。
参数 是否必选 说明 类型 取值范围 默认值 sources 是 节点的ID,支持多点输入,csv格式,逗号分割。 字符串 当前仅支持少于等于100000个 id输入。 - actived_p 否 初始sources节点对应的权重初始值。 Double 0~10000,包括0和100000。
Shortest Paths)参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 输入路径的起点ID String - - target 是 输入路径的终点ID String - - directed 否 是否考虑边的方向 Bool true或false false
关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 输入路径的起点ID String