检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
项目名称,例如:XXX项目。 - 使用场景 例如: 使用YOLOv5算法对工地的视频流裁帧后进行安全帽检测。 使用BertBase算法对用户在app上购买商品后的评论进行理解。 - CPU架构 X86/ARM,自有软件是否支持ARM。 例如:4个推理模型在ARM上运行,6个推理模型在X86上运行。 -
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
项目名称,例如:XXX项目。 - 使用场景 例如: 使用YOLOv5算法对工地的视频流裁帧后进行安全帽检测。 使用BertBase算法对用户在app上购买商品后的评论进行理解。 - CPU架构 X86/ARM,自有软件是否支持ARM。 例如:4个推理模型在ARM上运行,6个推理模型在X86上运行。 -
设置断点续训练 什么是断点续训练 断点续训练是指因为某些原因(例如容错重启、资源抢占、作业卡死等)导致训练作业还未完成就被中断,下一次训练可以在上一次的训练基础上继续进行。这种方式对于需要长时间训练的模型而言比较友好。 断点续训练是通过checkpoint机制实现。 checkp
ASCEND service_type String 镜像支持服务类型。枚举值如下: COMMON:通用镜像。 INFERENCE: 建议仅在推理部署场景使用。 TRAIN: 建议仅在训练任务场景使用。 DEV: 建议仅在开发调测场景使用。 UNKNOWN: 未明确设置的镜像支持的服务类型。
可视化作业的日志存储路径。 job_id Long 可视化作业的ID。 resource_id String 可视化作业的计费资源ID。 请求示例 如下以查询正在部署中的作业,按递增排序,显示第1页前10个可视化作业为例。 GET https://endpoint/v1/{project_id}/visualization-jobs
ASCEND service_type String 镜像支持服务类型。枚举值如下: COMMON:通用镜像。 INFERENCE: 建议仅在推理部署场景使用。 TRAIN: 建议仅在训练任务场景使用。 DEV: 建议仅在开发调测场景使用。 UNKNOWN: 未明确设置的镜像支持的服务类型。
Baichuan3-13B(PyTorch)基于DevServer训练指导 推理参考文档: 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:ascendcloud-aigc Controlnet插件支持NPU推理(适配ComfyUI) Open-Clip模型昇腾适配
增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的
算子依赖包:AscendCloud-OPP 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.910 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的特性 表1 本版本支持的特性说明 分类 软件包特性说明
算子依赖包:AscendCloud-OPP 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的特性 表1 本版本支持的特性说明 分类 软件包特性说明
自动模型优化介绍 ModelArts训练支持超参搜索功能,自动实现模型超参搜索,为您的模型匹配最合适的超参。 在模型训练过程中,有很多超参需要根据任务进行调整,比如learning_rate、weight_decay等,这一工作往往需要一个有经验的算法工程师花费一定精力和大量时间
这种方法主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.908版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
可用版本的资产有效。 在版本框右侧单击“添加版本”,弹出“选择云服务区域”,选择区域后单击“确定”跳转到“发布资产到AI Gallery”页面,参考更新已发布资产的版本添加资产版本。 编辑完成后,单击右上方的“保存”完成修改。 图4 编辑算法的版本 关联资产 算法可以关联数据集资
修改标签:单击操作列的“修改”按钮,然后在弹出的对话框中输入修改后的标签名,然后单击“确定”完成修改。修改后,之前添加了此标签的图片,都将被标注为新的标签名称。 删除标签:单击操作列的“删除”按钮,在弹出的对话框中,根据界面提示选择删除对象,然后单击“确定”。 删除后的标签无法再恢复,请谨慎操作。 继续运行
int8_kv_cache/ \ --dtype float16 \ --int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将S
int8_kv_cache/ \ --dtype float16 \ --int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将S
int8_kv_cache/ \ --dtype float16 \ --int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将S
int8_kv_cache/ \ --dtype float16 \ --int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将S
int8_kv_cache/ \ --dtype float16 \ --int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将S