检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。 Step4 制作自定义镜像 目标:构建安装好如下软件的容器镜像,并使用ModelArts训练服务运行。 ubuntu-18.04 cuda-11.1 python-3
如何禁止Ubuntu 20.04内核自动升级? 场景描述 在Ubuntu 20.04每次内核升级后,系统需要重新启动以加载新内核。如果您已经安装了自动更新功能,则系统将自动下载和安装可用的更新,这可能导致系统在不经意间被重启;如果使用的软件依赖于特定版本的内核,那么当系统自动更新
训练专属预置镜像列表 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表
Notebook基础镜像x86 自定义专用镜像 自定义镜像包含两种镜像:conda3-cuda10.2-cudnn7-ubuntu18.04,conda3-ubuntu18.04,该类镜像是无AI引擎以及相关的软件包,镜像较小,只有2~5G。用户使用此类镜像做基础镜像,安装自己需要的
推理专属预置镜像列表 ModelArts的推理平台提供了一系列的基础镜像,用户可以基于这些基础镜像构建自定义镜像,用于部署推理服务。 X86架构(CPU/GPU)的推理基础镜像 表1 TensorFlow AI引擎版本 支持的运行环境 镜像名称 URI 2.1.0 CPU GPU(cuda10
type String 镜像类型。枚举值如下: BUILD_IN:系统内置镜像。 DEDICATED:用户保存的镜像。 update_at Long 镜像最后更新的时间,UTC毫秒。 visibility String 镜像可见度。枚举值如下: PRIVATE:私有镜像。 PUBLIC:
准备镜像 准备大模型推理适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2
打印如下信息,表示上传镜像成功。 图5 成功上传镜像 Step8 注册镜像 镜像上传至SWR成功后,在ModelArts控制台的“镜像管理”页面中单击“注册镜像”。 图6 在ModelArts控制台注册镜像 在镜像源中,选择上一步中上传到SWR自有镜像仓中的镜像名,作为模型推理使用的镜像,架构选
进入ModelArts控制台,单击“镜像管理 > 注册镜像”,进入“注册镜像”页面。 根据界面提示填写相关信息,然后单击“立即注册”。 “镜像源”选择构建好的镜像。可直接复制完整的SWR地址,或单击选择SWR构建好的镜像进行注册。 图2 选择镜像源 “架构”和“类型”:根据自定义镜像的实际框架选择。
弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。 Step4 制作自定义镜像 目标:构建安装好如下软件的容器镜像,并使用ModelArts训练服务运行。 ubuntu-18.04 cuda-11.1 python-3
弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。 Step4 制作自定义镜像 目标:构建安装好如下软件的容器镜像,并使用ModelArts训练服务运行。 ubuntu-18.04 cuda-11.1 python-3
1:8080/goodbye 如果验证自定义镜像功能成功,结果如下图所示。 图3 校验接口 上传自定义镜像至SWR服务。 完成自定义镜像上传后,您可以在“容器镜像服务>我的镜像>自有镜像”列表中看到已上传镜像。 将自定义镜像创建为模型 参考从容器镜像中选择元模型导入元模型,您需要特别关注以下参数:
调试 将上传到SWR上的镜像注册到ModelArts的镜像管理中。 登录ModelArts管理控制台,在左侧导航栏中选择“镜像管理 ”,单击“注册镜像”,根据界面提示注册镜像。注册后的镜像可以用于创建Notebook。 在Notebook中使用自定义镜像创建Notebook并调试,调试成功后,保存镜像。
弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。 Step5 制作自定义镜像 目标:构建安装好如下软件的容器镜像,并使用ModelArts训练服务运行。 ubuntu-18.04 cuda-11.1 python-3
因运行时间到期停止,将导致镜像保存失败。 镜像保存成功后,实例状态变为“运行中”,用户可在“镜像管理”页面查看到该镜像详情。 单击镜像的名称,进入镜像详情页,可以查看镜像版本/ID,状态,资源类型,镜像大小,SWR地址等。 Step4 使用保存成功的镜像用于推理部署 将Step2
timeout = 120 在华为开源镜像站中,搜索pypi,可以查看pip.conf文件内容。 准备可用的apt源文件Ubuntu-Ports-bionic.list。本示例使用华为开源镜像站提供的apt源,执行如下命令获取apt源文件。 wget -O Ubuntu-Ports-bionic
选择“镜像管理”,进入镜像管理页面。 单击“注册镜像”,镜像源即为步骤1中推送到SWR中的镜像。请将完整的SWR地址复制到这里即可,或单击可直接从SWR选择自有镜像进行注册。 “架构”和“类型”根据实际情况选择,与镜像源保持一致。 注册镜像时,“架构”和“类型”需要和镜像源保持一
方式一:在Notebook实例创建页面,镜像类型选择“自定义镜像”,名称选择上述保存的镜像。 图3 创建基于自定义镜像的Notebook实例 方式二:在“镜像管理”页面,单击某个镜像的镜像详情,在镜像详情页,单击“创建Notebook”,也会跳转到基于该自定义镜像创建Notebook的页面。 镜像保存时,哪些目录的数据可以被保存
从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend) 训练框架的自定义镜像约束 推荐自定义镜像使用ubuntu-18.04的操作系统,避免出现版本不兼容的问题。
准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍