检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
怎样升级DLI作业的引擎版本 DLI提供了Spark和Flink计算引擎,为用户提供了一站式的流处理、批处理、交互式分析的Serverless融合处理分析服务,当前,Flink计算引擎推荐版本:Flink 1.15,Spark计算引擎推荐版本: Spark 3.3.1。 本节操作介绍如何升级作业的引擎版本。
DLI计算引擎版本生命周期 版本号说明 DLI计算引擎版本号:格式为计算引擎名称 x.y.z,其中计算引擎分为Flink和Spark,版本号具体含义如图1所示。 图1 DLI计算引擎版本号 版本支持情况 Flink计算引擎推荐版本:Flink 1.15。 Spark计算引擎推荐版本:
队列引擎版本升级后,在创建表时,提示权限不足怎么办? 问题描述 队列版本从Spark 2.x版本切换至Spark 3.3.x版本时,或切换使用HetuEngine后,如果已经赋予IAM用户的建表权限,但是在创建表时候仍然提示权限不足。 根因分析 DLI队列的引擎版本不同,校验的权限范围不同:
Flink 1.15版本说明 数据湖探索(DLI)遵循开源Flink计算引擎的发布一致性。本文介绍Flink 1.15版本所做的变更说明。 更多Flink 1.15版本说明请参考Release Notes - Flink Jar 1.15、Flink OpenSource SQL1
Flink 1.12版本说明 数据湖探索(DLI)遵循开源Flink计算引擎的发布一致性。本文介绍Flink 1.12版本所做的变更说明。 更多Flink 1.12版本说明请参考Release Notes - Flink 1.12。 Flink 1.12版本发布时间 版本名称 发布时间
Spark 3.1.1版本说明 数据湖探索(DLI)遵循开源Spark计算引擎的发布一致性。本文介绍Spark 3.1.1版本所做的变更说明。 更多Spark 3.1.1版本说明请参考Spark Release Notes。 Spark 3.1.1版本发布时间 版本名称 发布时间
Spark 2.4.5版本说明 数据湖探索(DLI)遵循开源Spark计算引擎的发布一致性。本文介绍Spark 2.4.5版本所做的变更说明。 更多Spark 2.4.5版本说明请参考Spark Release Notes。 Spark 2.4.5版本发布时间 版本名称 发布时间
Spark 3.3.1版本说明 数据湖探索(DLI)遵循开源Spark计算引擎的发布一致性。本文介绍Spark 3.3.1版本所做的变更说明。 更多Spark 3.3.1版本说明请参考Spark Release Notes。 Spark 3.3.1版本发布时间 版本名称 发布时间
number规则。 不同的引擎版本支持的防御规则不同。 如需查看队列的引擎版本,您可以在队列资源的资源列表页面,通过查看队列基本信息中的“默认版本”获取引擎的版本信息。 图1 查看队列引擎版本 表2 DLI支持的系统防御规则 规则ID 规则名称 说明 类别 适用引擎 支持的动作 取值说明
创建DLI自定义委托权限 使用Flink 1.15和Spark 3.3及以上版本的引擎执行作业时,当您所需的委托没有包含在DLI系统委托dli_management_agency时,您需要在IAM页面创建相关委托,并在作业配置中添加新建的委托信息。dli_management_a
件版本的任何技术服务支持。建议您在执行作业时选择新版本的Flink引擎,推荐使用DLI Flink 1.15版本。 正在使用Flink 1.10、Flink1.11版本的作业也请您尽快切换至新版本的Flink引擎,否则作业执行过程中出现的错误,不再提供该版本的任何技术服务支持。
DLI Flink与MRS Flink有什么区别? DLI Flink是天然的云原生基础架构。在内核引擎上DLI Flink进行了多处核心功能的优化,并且提供了企业级的一站式开发平台,自带开发和运维功能,免除自建集群运维的麻烦;在connector方面除了支持开源connecto
2版本停止服务(EOS)后,不再提供该软件版本的任何技术服务支持。建议您在执行作业时选择新版本的Spark引擎,推荐使用DLI Spark 3.3.1版本。 正在使用DLI Spark 2.3.2版本的作业也请您尽快切换至新版本的Spark引擎,否则作业执行过程中出现的错误,不再提供该版本的任何技术服务支持。 如您
7版本停止服务(EOS)后,不再提供该软件版本相关的任何技术服务支持。建议您在执行作业时选择新版本的Flink引擎,推荐使用DLI Flink 1.15版本。 正在使用Flink 1.7版本的作业也请您尽快切换至新版本的Flink引擎,否则作业执行过程中出现的错误,不再提供该版本的任何技术服务支持。 如您有任何
操作场景 在Linux或Windows环境下您可以使用JDBC应用程序连接DLI服务端提交作业。 使用JDBC连接DLI提交的作业运行在Spark引擎上。 JDBC版本2.X版本功能重构后,仅支持从DLI作业桶读取查询结果,如需使用该特性需具备以下条件: 在DLI管理控制台“全局配置 >
流生态作业开发指引 概述 流生态系统基于Flink和Spark双引擎,完全兼容Flink/Storm/Spark开源社区版本接口,并且在此基础上做了特性增强和性能提升,为用户提供易用、低时延、高吞吐的数据湖探索。 数据湖探索的流生态开发包括云服务生态、开源生态和自拓展生态: 云服务生态
Hive源表 简介 Apache Hive 已经成为了数据仓库生态系统中的核心。 它不仅仅是一个用于大数据分析和ETL场景的SQL引擎,同样它也是一个数据管理平台,可用于发现,定义,和演化数据。 Flink与Hive的集成包含两个层面,一是利用了Hive的MetaStore作为持
站内搜索等场景。 云搜索服务(Cloud Search Service,简称CSS)为DLI提供托管的分布式搜索引擎服务,完全兼容开源Elasticsearch搜索引擎,支持结构化、非结构化文本的多条件检索、统计、报表。 云搜索服务的更多信息,请参见《云搜索服务用户指南》。 更多
driver的相关参数:通过设置队列的Spark driver,以提升队列资源的调度效率。 本节操作介绍在管理控制台设置队列属性的操作步骤。 约束与限制 仅Spark引擎的SQL队列支持配置队列属性。 仅在队列创建完成后支持设置队列属性。 当前仅支持设置Spark driver相关队列属性。 不支持批量设置队列属性。
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano