检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
传至OBS桶。 上传OBS的文件规范: 文件名规范:不能有+、空格、制表符。 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。如:“/bucketName/data-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
由于欧拉源上没有git-lfs包,所以需要从压缩包中解压使用,在浏览器中输入如下地址下载git-lfs压缩包并上传到容器的/home/ma-user目录下 https://github.com/git-lfs/git-lfs/releases/download/v3.2.0/git-lfs-linux-arm64-v3
对于昇腾硬件的适配与支持。对AI有使用诉求的企业、NLP领域开发者,可以借助这个库,便捷地使用昇腾算力进行自然语言理解(NLU)和自然语言生成(NLG)任务的SOTA模型开发与应用。 支持的模型结构框架 AI Gallery的Transformers库支持的开源模型结构框架如表1所示。
对象。 Manifest文件可以由用户、第三方工具或ModelArts数据标注生成,其文件名没有特殊要求,可以为任意合法文件名。为了ModelArts系统内部使用方便,ModelArts数据标注功能生成的文件名由如下字符串组成:“DatasetName-VersionName.m
文件合集大小不超过50GB。 文件上传完成前,请不要刷新或关闭上传页面,防止意外终止上传任务,导致数据缺失。 当模型的“任务类型”是除“文本问答”和“文本生成”之外的类型(即自定义模型)时,上传的模型文件要满足自定义模型规范,否则该模型无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。
带来了极大的便利和性能提升。Ascend-vLLM可广泛应用于各种大模型推理任务,特别是在需要高性能和高效率的场景中,如自然语言处理、图像生成和语音识别等。 Ascend-vLLM的主要特点 易用性:Ascend-vLLM简化了在大模型上的部署和推理过程,使开发者可以更轻松地使用它。
ocker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com/containerd/nerdctl/releases/download/v1.7.6/nerdctl-1.7
http_proxy=http://proxy.modelarts.com:80 \ HTTPS_PROXY=http://proxy.modelarts.com:80 \ https_proxy=http://proxy.modelarts.com:80 USER root
stable_diffusers_train.sh。 bash stable_diffusers_train.sh Step4 下载模型和数据集 数据集下载地址:https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions。 启动脚本前的两
下载地址:https://huggingface.co/benjamin-paine/stable-diffusion-v1-5/tree/main (需登录) 下载stable-diffusion-xl-base-1.0模型包并上传到宿主机上,官网下载地址:https://huggingface
Workflow运行流程 项目类型介绍 图像分类 图像分类项目,是对图像进行分类。需要添加图片并对图像进行分类标注,完成图片标注后开始模型训练,即可快速生成图像分类模型。可应用于商品的自动分类、运输车辆种类识别和残次品的自动分类等。例如质量检查的场景,则可以上传产品图片,将图片标注“合格”、“
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
即便模型训练中断,也可以基于checkpoint接续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置接续训练,加载中断生成的checkpoint,中间不需要改动任何参数。可以通过训练脚本中的SAVE_INTERVAL参数来指定间隔多少step保存checkpoint。
“特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或者生成对某些特定的人们来说是有价值、有意义的数据。“数据处理”又分为“数据校验”、“数据清洗”、“数据选择”和“数据增强”四类。 “数据校验”表示对数据集进行校验,保证数据合法。
并将下述内容写入其中。 # 容器镜像构建主机需要连通公网 # 基础容器镜像, https://github.com/NVIDIA/nvidia-docker/wiki/CUDA # # https://docs.docker.com/develop/develop-images
并将下述内容写入其中。 # 容器镜像构建主机需要连通公网 # 基础容器镜像, https://github.com/NVIDIA/nvidia-docker/wiki/CUDA # # https://docs.docker.com/develop/develop-images
间不会造成额外费用增加。 更多信息,请参见导入AI应用对镜像大小的约束限制。 自动学习项目中,在完成模型部署后,其生成的模型也将自动上传至模型列表中。但是自动学习生成的模型无法下载,只能用于部署上线。 Standard推理服务部署 只支持使用专属资源池部署的在线服务使用Cloud
create_time Long 训练作业创建时间戳,单位为毫秒,创建成功后由ModelArts生成返回,无需填写。 user_name String 训练作业创建用户的用户名,创建成功后由ModelArts生成返回,无需填写。 annotations Map<String,String> 训