检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
名称 获取路径 插件代码包 AscendCloud-6.3.908软件包中的AscendCloud-AIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件
max_model_len is greater than the drived max_model_len。 解决方法:修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。config.json存在模型
max_model_len is greater than the drived max_model_len。 解决方法:修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。config.json存在模型
Gallery中的YOLOv5算法,训练结束后没有显示模型评估结果。 原因分析 未标注的图片过多,导致没有模型评估结果。 处理方法 对所有训练数据进行标注。 父主题: 预置算法运行故障
如下以创建uuid为2cd88daa-31a4-40a8-a58f-d186b0e93e4f的训练作业对应worker-0镜像保存任务为例。 POST https://endpoint/v2/{project_id}/training-jobs/2cd88daa-31a4-40a8-a58f-d1
Integer 磁盘大小。 unit String 磁盘大小单位。 请求示例 如下以查询北京四训练作业所有的CPU公共资源规格为例。 GET https://endpoint/v2/{project_id}/training-job-flavors?flavor_type=CPU 响应示例
参数"return_latency",默认为false,如果指定该参数为true,则会在相应请求的返回体中返回字段"latency",返回内容如下: prefill_latency(首token时延):请求从到达服务开始到生成首token的耗时 model_prefill_lat
参数"return_latency",默认为false,如果指定该参数为true,则会在相应请求的返回体中返回字段"latency",返回内容如下: prefill_latency(首token时延):请求从到达服务开始到生成首token的耗时 model_prefill_lat
为针对多样的VL任务,特殊tokens如下:<img> </img> <ref> </ref> <box> </box>。 对于带图像输入的内容可表示为Picture id: <img>img_path</img>\n{your prompt},其中id表示对话中的第几张图片。"i
选参数"return_latency",默认为false,若指定该参数为true,则会在相应请求的返回体中返回字段"latency",返回内容如下: prefill_latency(首token时延):请求从到达服务开始到生成首token的耗时 model_prefill_lat
在收集必要信息后,尝试退出当前AI任务并尝试重新执行 退出当前AI任务以便重新执行 NPU: errorcode告警 NPUErrorCodeWarning 重要 这里涵盖了大量重要及以上的NPU错误码,您可以根据这些错误码进一步定位错误原因 对照《黑匣子错误码信息列表》和《健康管理故障定义》进一步定位错误
input. 原因分析 出现该问题的可能原因如下: 数据输入不连续,cuDNN不支持的类型。 处理方法 禁用cuDNN,在训练前加入如下代码。 torch.backends.cudnn.enabled = False 将输入数据转换成contiguous。 images = images
分布式训练完整代码示例 以下对resnet18在cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例。 训练启动文件main.py内容如下(如果需要执行单机单卡训练作业,则将分布式改造的代码删除): import datetime import inspect import
推理 PyTorch Open-Sora-Plan1.0基于DevServer适配PyTorch NPU训练推理指导(6.3.907) 表8 内容审核模型 模型名称 应用场景 软件技术栈 指导文档 Bert 推理 MindSpore Lite Bert基于DevServer适配MindSpore
failed] 原因分析 出现该问题的可能原因如下: 数据读入的速度跟不上模型迭代的速度。 处理方法 减少预处理shuffle操作。 dataset = dataset.shuffle(buffer_size=x) 关闭数据预处理开关,可能会影响性能。 NPURunConfig(
参数类型 描述 - String 状态码: 500 表7 响应Body参数 参数 参数类型 描述 - String 请求示例 GET https://{endpoint}/v1/{project_id}/workspaces/ccd05d1a553b4e188ea878e7dcb85e47
/home/work/user-job-dir/app/train.py {python_file_parameter}”。 请求示例 GET https://endpoint/v1/{project_id}/training-job-configs?per_page=10&page=1&
initial=_SAMPLE_SHUFFLE_INITIAL, # ), ]) 重新训练1个epoch。脚本参考内容如下。 cd /home/ma-user/open_clip python -m training.main \ --save-frequency
3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容 202:语音分割 600:视频标注 表6 LabelAttribute 参数 参数类型 描述 default_value String 标签属性默认值。
使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 # WARNING # This