检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查看批量服务详情 当模型部署为批量服务成功后,您可以进入“批量服务”页面,来查看服务详情。 登录ModelArts管理控制台,在左侧菜单栏中选择“模型部署>批量服务”,进入“批量服务”管理页面。 单击目标服务名称,进入服务详情页面。 您可以查看服务的“名称”、“状态”等信息,详情说明请参见表1。
获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface
用团队标注功能时,必须指定一个团队。一个团队可以添加多个成员。新添加的团队,其成员列表为空。您需要根据实际情况添加即将参与标注任务的成员信息。 一个账号最多可添加10个团队。一个团队最多支持添加100个成员,当超过100时,建议分为多个团队进行管理。 如果数据集需要启用团队标注功
修改在线服务配置 对于已部署的服务,您可以修改服务的基本信息以匹配业务变化,更换模型的版本号,实现服务升级。 您可以通过如下两种方式修改服务的基本信息: 方式一:通过服务管理页面修改服务信息 方式二:通过服务详情页面修改服务信息 前提条件 服务已部署成功,“部署中”的服务不支持修改服务信息进行升级。
API。在集成至生产环境之前,需要对此API进行调测,您可以使用以下方式向在线服务发起预测请求: 方式一:使用图形界面的软件进行预测(以Postman为例)。Windows系统建议使用Postman。 方式二:使用curl命令发送预测请求。Linux系统建议使用curl命令。 方式三:使用Python语言发送预测请求。
VSCode远程连接时卡顿,或Python调试插件无法使用如何处理? 问题现象 VSCode远程连接Notebook时,单击“VS Code接入”跳转至连接界面时一直卡顿,或Python调试插件无法使用。 图1 Python调试插件错误 原因分析 该问题通常由VS Code安装了第三方中文插件引起。
使用SSH连接,报错“Connection reset”如何解决? 问题现象 原因分析 可能是用户网络限制原因。比如部分企业网络的SSH是默认屏蔽的。 解决方法 用户重新进行申请SSH权限。 父主题: VS Code连接开发环境失败故障处理
集成在线服务API至生产环境中应用 针对已完成调测的API,可以将在线服务API集成至生产环境中应用。 前提条件 确保在线服务一直处于“运行中”状态,否则会导致生产环境应用不可用。 集成方式 ModelArts在线服务提供的API是一个标准的Restful API,可使用HTTPS协议访问。ModelAr
项目成功。您可以通过在日志中搜索“item”关键字查看。当容错检查正常通过时,可以减少运行故障上报问题。 容错检查失败时,会打印检查失败的日志。您可以通过在日志中搜索“item”关键字查看失败信息。 如果作业重启次数没有达到设定的次数,则会自动做重新下发作业。您可以通过搜索“error
--host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号。分离部署对外服务使用的是scheduler实例端口,在后续推理性能测试和精度测试时,服务端口需要和scheduler实例端口保持一致。 --model:HuggingFace下载的官方权重
获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface
在ModelArts中创建训练作业,并完成模型训练,在得到满意的模型后,可以将训练后得到的模型导入至模型管理,方便统一管理,同时支持将模型快速部署上线为服务。 约束与限制 针对使用订阅算法的训练作业,无需推理代码和配置文件,其生成的模型可直接导入ModelArts。 使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。
型在“customize_service.py”中可以使用“self.spark”获取SparkSession对象。 推理代码中,需要通过绝对路径读取文件。模型所在的本地路径可以通过self.model_path属性获得。 当使用TensorFlow、Caffe、MXNet时,self
在Windows的“服务”中,找到Grafana,将其开启,如果已经开启,则直接进入4。 登录Grafana。 Grafana默认在本地的3000端口启动,打开链接http://localhost:3000,出现Grafana的登录界面。首次登录用户名和密码为admin,登录成功后请根据提示修改密码。
--host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号。分离部署对外服务使用的是scheduler实例端口,在后续推理性能测试和精度测试时,服务端口需要和scheduler实例端口保持一致。 --model:HuggingFace下载的官方权重
ma-cli ma-job训练作业支持的命令 ma-cli dli-job提交DLI Spark作业支持的命令 使用ma-cli obs-copy命令复制OBS数据 父主题: 使用Notebook进行AI开发调试
本地再进行操作。 数据集复制有两种方式,推荐使用OBS路径复制。 OBS路径(推荐) 直接使用moxing的copy_parallel接口,复制对应的OBS路径。 ModelArts数据管理中的数据集(即manifest文件格式) 使用moxing的copy_manifest接口
获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface
量服务管理页面。单击目标服务名称,进入服务详情页面。您可以单击页面右上角“停止”,停止正在运行中服务。 部署方式为ModelArts边缘节点和ModelArts边缘资源池的服务不支持停止。 删除服务 如果服务不再使用,您可以删除服务释放资源。 登录ModelArts管理控制台,在
管理在线服务生命周期 修改在线服务配置 在云监控平台查看在线服务性能指标 集成在线服务API至生产环境中应用 设置在线服务故障自动重启 父主题: 使用ModelArts Standard部署模型并推理预测