检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
sym=True, use_exllama=False) 加载要量化的模型,并将gptq_config传递给from_pretrained()方法。 quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto"
sym=True, use_exllama=False) 加载要量化的模型,并将gptq_config传递给from_pretrained()方法。 quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto"
sym=True, use_exllama=False) 加载要量化的模型,并将gptq_config传递给from_pretrained()方法。 quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto"
定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。
sym=True, use_exllama=False) 加载要量化的模型,并将gptq_config传递给from_pretrained()方法。 quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto"
return_dict: Optional[bool] = None, ...) 所有的模型都需要通过“forward”方法来实现自己的推理逻辑,这个方法会在执行“model(input_ids)”的时候进行调用 模型基类NewBertForXXX:该类承自NewBertPreTrainedModel。
/v1/{project_id}/networks 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 apiVersion 是 String API版本。可选值如下:
置环境变量来屏蔽INFO级别的日志信息。环境变量的设置一定要在import tensorflow或者import moxing之前。 处理方法 您需要通过在代码中设置环境变量“TF_CPP_MIN_LOG_LEVEL”来屏蔽INFO级别的日志信息。具体操作如下: import os
配置了运行时依赖,没有正常安装pip依赖包。 原因分析 自定义镜像导入不支持配置运行时依赖,系统不会自动安装所需要的pip依赖包。 处理方法 重新构建镜像。 在构建镜像的dockerfile文件中安装pip依赖包,例如安装Flask依赖包。 # 配置华为云的源,安装 python、python3-pip
用户的自定义镜像中无ascend_check工具,导致启动预检失败。 用户的自定义镜像中的ascend相关工具不可用,导致预检失败。 处理方法 通过给训练作业加环境变量“MA_DETECT_TRAIN_INJECT_CODE”并将对应的值设置成0,就可以将预检功能关闭。环境变量说明参考查看训练容器环境变量。
es/{service_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 service_id 是 String 服务ID,如需批量删除多个服务,则将多个service_id使用英文半角逗号拼接。
ers/{worker_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 worker_id 是 String 标注团队成员ID。 workforce_id 是 String 标注团队ID。
Network is unreachable’ 原因分析 出现该问题的可能原因如下: 因为安全性问题,ModelArts内部训练机器不能访问外网。 处理方法 将pretrained改成false,提前下载好预训练模型,加载下载好的预训练模型位置即可,可参考如下代码。 import torch import
g级别的日志可以默认查询出来。如果想要指定INFO等级的日志能够查询出来,需要在代码中指定logger的输出日志等级为INFO级别。 处理方法 在推理代码所在的py文件中,指定日志输出到Console的默认级别为INFO级别,确保将对应级别的日志打印出来。参考代码如下: import
ns/{version_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 task_id 是 String 数据处理任务ID。 version_id 是 String 数据处理任务的版本ID。
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 task_id 是 String 任务ID。 请求参数 无 响应参数 无 请求示例 停止智能标注或自动分组任务
/v2/{project_id}/authorizations 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 user_id 否 String 用户ID,当user_
通过查看日志发现本地vscode-scp-done.flag显示成功上传,但远端未接收到。 图1 vscode-scp-done.flag本地成功上传 解决方法 执行如下命令查看远端是否上传。 cd /home/ma-user/.vscode-server/bin/$commit_id #comm
GPU,but CUDA is not enabled” 原因分析 出现该问题的可能原因如下: 新安装的包与镜像中带的CUDA版本不匹配。 处理方法 必现的问题,使用本地Pycharm远程连接Notebook调试安装。 先远程登录到所选的镜像,使用“nvcc -V”查看目前镜像自带的CUDA版本。
tasks/{task_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 task_id 是 String 数据处理任务ID。 请求参数 表2 请求Body参数 参数 是否必选 参数类型