检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
-n 1000 address 192.168.100.18 -tcp RoCE测试结果如图: 图14 RoCE测试结果(接收端) 图15 RoCE测试结果(服务端) 当某网卡已经开始RoCE带宽测试时,再次启动任务会有如下报错: 图16 报错信息 需要执行下述命令后关闭roce_test任务后再启动任务。
本文原始数据集来源:https://github.com/aceimnorstuvwxz/toutiao-text-classfication-dataset 本文实验用数据集基于原始数据集处理而来,进行了简单的采样、清晰和prompt工程。 实验数据集获取地址:https://maas-operations
零配置,即开即用,面向特定的场景,将AI开发过程中常用的依赖环境进行固化,提供合适的软件、操作系统、网络等配置策略,通过在硬件上的充分测试,确保其兼容性和性能最合适。 方便自定义,预置镜像已经在SWR仓库中,通过对预置镜像的扩展完成自定义镜像注册。 安全可信,基于安全加固最佳实践,访
ignore_eos, "stream": args.stream, "top_k": args.top_k, "top_p": args.top_p } response = requests.post(f"http://{args
ignore_eos, "stream": args.stream, "top_k": args.top_k, "top_p": args.top_p } response = requests.post(f"http://{args
具体计费方式请参见ModelArts产品价格详情。部署AI应用可选择按需计费,也可根据业务类型和需求购买套餐包。 为避免出现因购买套餐和使用套餐不一致产生多余计费的问题出现, 建议您注意核对在使用的套餐包资源规格是否和购买的套餐包资源规格一致。 父主题: 计费相关
failed with error code 0” 原因分析 出现该问题的可能原因如下: pytorch1.4引擎与之前pytorch1.3版本兼容性问题。 处理方法 在images之后添加contigous。 images = images.cuda() pred = model(images
以减少作业的排队时长。 什么是训练作业优先级 在用户运行训练作业过程中,需要对训练作业做优先级划分。比如有一些任务是低优先级,可能是跑一些测试、也可能是跑一些简单的不重要的实验。在这类场景下,当有高优先级任务的时候,需要能比低优先级任务更快进入排队队列。 在资源使用高峰期,用户可
ignore_eos, "stream": args.stream, "top_k": args.top_k, "top_p": args.top_p, "stop_token_ids": stop_token_ids,
ignore_eos, "stream": args.stream, "top_k": args.top_k, "top_p": args.top_p } response = requests.post(f"http://{args
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
429; proxy_pass http://127.0.0.1:8501; } } 准备启动脚本。 启动前先创建ssl证书,然后启动TFServing的启动脚本。 启动脚本run.sh示例代码如下: #!/bin/bash mkdir -p /etc/nginx/ssl/server
Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.911)
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.910)
使用AI Gallery微调大师训练模型 AI Gallery支持将模型进行微调,训练后得到更优模型。 场景描述 模型微调是深度学习中的一种重要技术,它是指在预训练好的模型基础上,通过调整部分参数,使其在特定任务上达到更好的性能。 在实际应用中,预训练模型是在大规模通用数据集上训
"top_k": -1, "top_p": 1, "temperature": 0, "ignore_eos": false, "stream": false }' 方式二:通过vLLM服务API接口启动服务使用以下推理测试命令。下面以L
Llama llama-7b https://huggingface.co/huggyllama/llama-7b 2 llama-13b https://huggingface.co/huggyllama/llama-13b 3 llama-65b https://huggingface